Sínteses https://sinteses.blogfolha.uol.com.br Da Idade da Pedra à 'febre do grafeno', um blog sobre tudo aquilo de que o mundo é feito Sun, 21 Mar 2021 19:10:18 +0000 pt-BR hourly 1 https://wordpress.org/?v=4.7.2 Jovens cientistas do Brasil destacam-se ligando teoria e experimentos https://sinteses.blogfolha.uol.com.br/2020/02/11/jovens-cientistas-do-brasil-destacam-se-ligando-teoria-e-experimentos/ https://sinteses.blogfolha.uol.com.br/2020/02/11/jovens-cientistas-do-brasil-destacam-se-ligando-teoria-e-experimentos/#respond Tue, 11 Feb 2020 19:25:24 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/02/holofote-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=59 Amanda Fernandes Gouveia é química, com mestrado e doutorado na área, atualmente realizando pós-doutorado na Universidade Estadual de Campinas (Unicamp). A pesquisadora integra a equipe do Centro de Desenvolvimento de Materiais Funcionais (CDMF), sediado na Universidade Federal de São Carlos (UFSCar).

Luiz Felipe Cavalcanti Pereira é físico, também mestre e doutor na mesma área,  iniciando sua trajetória como professor da Universidade Federal de Pernambuco (UFPE) depois de um período na Universidade Federal do Rio Grande do Norte (UFRN).

Em comum, os dois têm a condição de finalistas em premiação internacional na área de ciência computacional de materiais, junto com 24 outros jovens pesquisadores da China, França, Alemanha, Itália, Suíça, Reino Unido e Estados Unidos.

O Rising Stars in Computational Materials Science Prize (Prêmio Estrelas em Ascensão em Ciência Computacional de Materiais) reconhece o potencial de pesquisadores em início de carreira, até 10 anos depois de receberem o título de doutor. “Eles representam o futuro do campo, e buscamos atrair atenção internacional para seu trabalho para que possam, eventualmente, receber novos incentivos à carreira”, afirma Susan Sinnot, editora chefe do periódico Computational Materials Science, que promove a premiação.

Além da inclusão entre os finalistas, os dois pesquisadores brasileiros têm em comum a busca por novos materiais para a produção ou armazenamento de energia, ainda que por caminhos diferentes.

Amanda Gouveia, pesquisadora do Centro de Desenvolvimento de Materiais Funcionais (Crédito: Divulgação)
Amanda Gouveia, pesquisadora do Centro de Desenvolvimento de Materiais Funcionais (Crédito: Divulgação)

Amanda Gouveia utiliza a química teórica no estudo e modelagem de materiais chamados de fotocatalisadores, semicondutores com propriedades fotocatalíticas. Fotocatalisadores aceleram fotorreações, ou seja, reações químicas provocadas pela luz. “Eles são considerados uma tecnologia promissora para novos sistemas de armazenamento de energia, essenciais para processos que vão da purificação de água à esterilização de instrumentos cirúrgicos”, explica Gouveia.

Já as pesquisas de Pereira buscam descrever a condução de calor e eletricidade em materiais nanoestruturados, ou seja, com estrutura em dimensões nanométricas. Dentre esses materiais estão grafeno e similares, que em alguns casos têm espessura de um único átomo. Uma das potenciais aplicações é no controle da condutividade térmica de nanofitas formadas por grafeno e nitreto de boro, que podem ser utilizadas, por exemplo, na produção de energia elétrica a partir do calor dissipado em indústrias e automóveis.

Luiz Felipe Pereira, professor da UFRN
Luiz Felipe Pereira, professor do Departamento de Física da UFPE (Crédito: Arquivo pessoal)

Em ambos os casos, as simulações computacionais são ferramentas indispensáveis, que estabelecem pontes entre o conhecimento teórico e resultados experimentais.

Para entender essa relação, é importante primeiro lembrar que, na escala nanoscópica, o comportamento dos objetos não é descrito pela física clássica (newtoniana) que aprendemos na escola, mas sim pela mecânica quântica. Assim, em objetos com tamanho comparável ao dos átomos, são observados comportamentos –por exemplo, de condução de eletricidade– muito diferentes dos que vemos na escala do nosso cotidiano.

Para investigar e compreender esses comportamentos, a combinação entre estudos teóricos, analíticos, e experimentos, é imprescindível. “É possível descrever o comportamento de um átomo analiticamente –com papel e caneta– utilizando as leis da mecânica quântica de forma razoavelmente precisa, usando apenas pequenas aproximações. Para um pequeno conjunto de átomos, uma molécula, por exemplo, as equações se tornam muito complicadas e é necessário recorrer a aproximações maiores. Descrever analiticamente o comportamento quântico de um objeto, como um fio nanoscópico, por exemplo, é praticamente impossível”, explica Pereira. “Por outro lado, do ponto de vista experimental, é muito difícil construir de maneira controlada objetos que contenham apenas alguns átomos. E, mesmo quando eles podem ser construídos, não costumam ter muita utilidade no mundo real”, complementa.

No trabalho de Amanda Gouveia, examinar a atividade fotocatalítica em profundidade e aprimorar materiais para uma próxima geração de fotocatalisadores exige, justamente, resolução quase atômica (ou seja, em que é possível observar cada átomo individualmente). “Associo os resultados experimentais aos teóricos, uma vez que, nas últimas décadas, a modelagem molecular foi estabelecida como técnica valiosa para revelar conhecimentos fundamentais sobre os problemas no nível atomístico. Os estudos teóricos não só captam os efeitos geométricos e eletrônicos sobre a atividade fotocatalítica, mas também são capazes de explicar e racionalizar os dados experimentais”, conta a pesquisadora.

“Nosso objetivo é justamente construir uma ponte entre os modelos teóricos baseados nas leis fundamentais da mecânica quântica e os experimentos realizados em sistemas com milhões de átomos”, situa Pereira. “Em muitos casos, conseguimos utilizar simulações muito sofisticadas para fazer essa ponte entre modelos teóricos muito simplificados e medidas experimentais muito complexas. Isto ajuda a entender as propriedades e os fenômenos observados nos materiais estudados, o que não seria possível apenas com modelos teóricos ou experimentos”, reitera.

Os finalistas do Rising Stars, que está em sua segunda edição, são convidados a preparar artigo sobre sua pesquisa para publicação em edição especial da revista Computational Materials Science, prevista para o início de 2021. Neste momento, também serão anunciados os vencedores que, além de quantia em dinheiro, passam a integrar o conselho editorial da publicação.

]]>
0
Inventividade de Ricardo Rodrigues permanece na ciência brasileira https://sinteses.blogfolha.uol.com.br/2020/01/09/inventividade-de-ricardo-rodrigues-permanece-na-ciencia-brasileira/ https://sinteses.blogfolha.uol.com.br/2020/01/09/inventividade-de-ricardo-rodrigues-permanece-na-ciencia-brasileira/#respond Thu, 09 Jan 2020 23:32:39 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/01/lnls-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=24 O Brasil perdeu há uma semana (no dia 3) o engenheiro e físico Antonio Ricardo Droher Rodrigues, conhecido na comunidade científica apenas como Ricardo Rodrigues. O pesquisador liderou o projeto de dois dos maiores empreendimentos científicos que o País já teve: o UVX e o Sirius, fontes de luz síncrotron instaladas em Campinas (SP).

A luz síncrotron é uma radiação eletromagnética que permite observar a matéria no nível atômico, assim como a luz visível possibilita enxergarmos cor, forma e outras características dos objetos no nível macroscópico. Ela é produzida em aceleradores de partículas que, no Brasil, estão no Laboratório Nacional de Luz Síncroton (LNLS), no Centro Nacional de Pesquisa em Energia e Materiais (CNPEM).

O UVX, primeira fonte de luz síncrotron do Hemisfério Sul, começou a ser projetado em 1987 e foi inaugurado 10 anos depois. O Sirius, fonte de maior brilho no mundo em sua faixa de energia, é um instrumento de pesquisa na fronteira da tecnologia que deve receber seus experimentos inaugurais nos próximos meses. Ambos foram projetados e construídos por equipes lideradas por Ricardo Rodrigues e, nas palavras de Antônio José Roque da Silva, diretor-geral do CNPEM, concretizaram sonhos que em algum momento pareceram impossíveis.

Bons perfis de Ricardo Rodrigues já foram publicados nos últimos dias, com destaque à homenagem feita por Cylon Gonçalves da Silva, que dirigiu a implantação do LNLS. Para ele, “o legado de Ricardo para o Brasil é o brilho intenso da luz síncrotron”. Aqui, destaco como esta luz permitiu a pesquisadores em várias áreas e, muito especialmente, de materiais, verem o que antes era invisível.

A estrutura de um material cristalino –cloreto de sódio, o sal de cozinha– foi observada pela primeira vez em 1913, por difração de raios-X. Desde então, buscam-se ferramentas que possam revelar mais detalhes, como olhos cada vez mais precisos para observar o mundo.

Conhecer a composição –quais átomos– e a estrutura –como se arranjam esses átomos– dos materiais é indispensável à compreensão das suas propriedades macroscópicas, como, por exemplo, dureza, magnetismo, comportamento em diferentes condições de temperatura e pressão, dentre outras. Cada nova alternativa instrumental significa um vasto campo de conhecimento e aplicações que se abre. O Sirius, por exemplo, terá uma resolução espacial que permitirá a observação de detalhes em escalas menores que as atuais. Além disso, trará uma resolução temporal capaz de mostrar a evolução de materiais submetidos a determinados processos -tensão, pressão, aquecimento, dentre outros- em intervalos de tempo muito pequenos, de milisegundos.

Luz síncrotron no Brasil

A emissão de radiação síncrotron foi prevista em 1944, e o primeiro experimento aconteceu em 1956. Inicialmente, eram usados aceleradores de colisão –como o famoso LHC–, projetados para outras finalidades. Em 1981, entra em operação o primeiro acelerador especializado na produção de luz síncrotron.

O Brasil foi rápido em identificar a relevância da área, já que o projeto do UVX é de 1987. No entanto, dificuldades financeiras e técnicas postergaram a inauguração para 1997, quando ele já não integrava o grupo dos equipamentos mais avançados em termos mundiais. Agora, o Sirius inverte essa situação.

“Ambos representaram grandes desafios, mas de naturezas distintas. Para a construção do UVX, era necessária a formação de pessoas que conseguissem reproduzir aqui o que já existia em outros países. Também foi preciso formar uma comunidade de usuários, já que, no momento da proposta, tínhamos apenas meia dúzia de pesquisadores com alguma experiência em radiação síncrotron no País”, conta José Roque. “No caso do Sirius, a demanda partiu dessa comunidade, hoje de mais de seis mil usuários, e precisamos inventar o que ainda não existia em lugar algum”, completa.

À frente de ambas as empreitadas esteve Ricardo Rodrigues, para quem, segundo José Roque, somente as leis da física eram aceitas como barreiras intransponíveis. Como características definidoras do colega, o diretor-geral do CNPEM destaca justamente este apreço pelo desafio, a criatividade, curiosidade, humildade e a “genuína vontade de formar pessoas”. Ressalta, também, como a trajetória de Rodrigues resultou em um perfil raro –e talvez único– em todo o mundo. “Ele se formou, originalmente, engenheiro civil, com o olhar prático da área. Além disso, sempre gostou de eletrônica. Depois estudou a teoria, a física de aceleradores, a utilização das linhas de luz. E, é claro, a produção da luz síncrotron, a engenharia dos aceleradores. Todo esse conhecimento facilitava muito o diálogo com todas as pessoas”, conclui.

Os frutos desse diálogo, na forma dos resultados já alcançados com o UVX e de tudo que está por vir no Sirius, são matéria que certamente comporá os textos deste blog com bastante frequência.

]]>
0