Sínteses https://sinteses.blogfolha.uol.com.br Da Idade da Pedra à 'febre do grafeno', um blog sobre tudo aquilo de que o mundo é feito Sun, 21 Mar 2021 19:10:18 +0000 pt-BR hourly 1 https://wordpress.org/?v=4.7.2 Inteligência artificial apoia criação de novos plásticos sob medida https://sinteses.blogfolha.uol.com.br/2021/01/11/inteligencia-artificial-apoia-criacao-de-novos-plasticos-sob-medida/ https://sinteses.blogfolha.uol.com.br/2021/01/11/inteligencia-artificial-apoia-criacao-de-novos-plasticos-sob-medida/#respond Mon, 11 Jan 2021 20:51:09 +0000 https://sinteses.blogfolha.uol.com.br/files/2021/01/baquelite-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=159 Na tradição de nomear períodos históricos –e pré-históricos– a partir das relações estabelecidas entre seres humanos e os materiais à sua volta, há quem chame o século XX de Idade do Plástico.

Hoje, a balança da visibilidade pende para os problemas causados pela presença crescente dos polímeros na vida humana, desde que começaram a substituir materiais menos abundantes, mais caros, pesados, e mais difíceis de serem adaptados a novas aplicações. No entanto, boa parte do desenvolvimento tecnológico nos últimos 100 anos tem a participação de plásticos, borrachas e fibras sintéticas, que transformaram a indústria automobilística, têxtil, aeroespacial, além de embalagens –como as justificadamente mal afamadas sacolas descartáveis e garrafas PET– e dispositivos médicos, dentre outras áreas.

Polímeros naturais são empregados há séculos, mas foi só nas primeiras décadas do século XX que surgiram as versões sintéticas. O pioneiro, o baquelite, foi patenteado em 1909. O marco de nascimento da ciência de polímeros é 1920, quando o alemão Hermann Staudinger publicou artigo que desvenda a formação das cadeias poliméricas. Staudinger recebeu o Prêmio Nobel de Química de 1953 pelo seu trabalho.

Polímero significa formado por muitas (poli) partes (meros). São macromoléculas formadas por longas cadeias de átomos e moléculas menores, os monômeros. Os diferentes tamanhos dessas cadeias, a sua estrutura espacial e as praticamente infinitas composições químicas levam também a inúmeras propriedades possíveis.

Este grande número de combinações possíveis, entre diferentes elementos, em cadeias de vários tamanhos e em sequências distintas de átomos, gera desafios para o uso da inteligência artificial na pesquisa de novos polímeros, no que é chamado de design racional de materiais. A inteligência artificial e, mais especificamente, a aprendizagem de máquina, têm se destacado como ferramentas poderosas na predição de propriedades e, assim, no desenvolvimento de novos materiais de modo mais eficaz, rápido e barato que o tradicional, em grande medida fundado no processo de tentativa e erro. Resultados importantes têm sido obtidos para os materiais mais antigos, como ligas metálicas e cerâmicas, mas a diversidade e complexidade dos polímeros, associadas à relativa juventude do campo, criam dificuldades adicionais.

Uma pesquisa realizada na Universidade de Chicago e publicada no final de 2020 no periódico Science Advances nos aproximou desta possibilidade de usar algoritmos para saber qual combinação de monômeros leva ao polímero com as propriedades desejadas para uma aplicação específica –como, por exemplo, leveza e resistência para novos veículos aeroespaciais– e, também, a materiais com características que reduzam seu impacto sobre o ambiente, como a biodegradabilidade.

O uso da inteligência artificial na área de materiais parte de grandes bancos de dados para buscar vínculos entre composição, estrutura e outros atributos e as propriedades apresentadas por materiais diversos. Na abordagem tradicional, materiais são sintetizados e, depois, analisados para caracterização de suas propriedades e avaliação de sua adequação ao uso pretendido. Com a inteligência artificial, a expectativa é que seja possível informar as propriedades desejadas e receber, em resposta, uma espécie de receita para os materiais mais promissores.

No entanto, escassez de dados empíricos e a qualidade desses dados comprometem muito este desenvolvimento. Uma outra questão, no caso dos polímeros, era o número de registros necessários para treinar uma rede neural (a ferramenta empregada neste caso) com moléculas conhecidas até que ela pudesse predizer propriedades de novos materiais.

O grupo da Universidade de Chicago combinou, à inteligência artificial, modelagem e simulação, para treinar uma rede neural a partir de apenas 2 mil polímeros hipotéticos, construídos computacionalmente para testar a ferramenta. Antes, imaginava-se que poderiam ser necessárias até milhões de cadeias poliméricas para obter este resultado.

A rede treinada foi capaz de prever com precisão as propriedades associadas a diferentes cadeias poliméricas, mostrando, sobretudo, que este é um caminho possível e muito promissor para conjuntos de dados sobre polímeros obtidos empiricamente. Com isso, a expectativa é que a partir de agora vejamos avanços no seu uso para a obtenção dos plásticos e outros materiais poliméricos indispensáveis ao enfrentamento de grandes desafios como, por exemplo, a transição energética, dentre vários outros.

]]>
0
Carimbo do vírus em polímero permite teste rápido de Covid na saliva https://sinteses.blogfolha.uol.com.br/2020/12/10/carimbo-do-virus-em-polimero-permite-teste-rapido-de-covid-na-saliva/ https://sinteses.blogfolha.uol.com.br/2020/12/10/carimbo-do-virus-em-polimero-permite-teste-rapido-de-covid-na-saliva/#respond Thu, 10 Dec 2020 18:53:30 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/12/imagemdosensor-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=148 Pesquisadores vinculados ao Centro de Tecnologia da Informação Renato Archer (CTI), sediado em Campinas, desenvolveram dois tipos de testes rápidos portáteis para detecção do vírus causador da Covid-19 na saliva. Os testes utilizam uma base sensora eletroquímica, na qual um material semicondutor –uma nanoestrutura de óxido de zinco– capta pequenas variações em sinais elétricos causadas pela presença do Sars-CoV-2.

No início da pandemia, o grupo liderado por Talita Mazon, pesquisadora no CTI, logo pensou em adaptar o teste originalmente desenvolvido para zika, dengue e outras doenças. “Nós trabalhamos com o óxido de zinco em biossensores há cerca de cinco anos. Estávamos na fase de validação do teste de zika e pensamos que bastava uma adaptação. Mas não tínhamos dinheiro para adquirir o antígeno e os anticorpos, e leva um tempo para as empresas conseguirem produzir um anticorpo monoclonal que resulte em teste com a especificidade desejada”, explica a pesquisadora.

Na plataforma utilizada, chamada de imunossensor, anticorpos são imobilizados na nanoestrutura e, quando entram em contato com proteínas do vírus (antígeno), a ligação química entre anticorpo e antígeno produz alterações características em sinais elétricos, que são captadas pelo material semicondutor e registradas em um gráfico no computador ou em dispositivos móveis como telefones celulares.

No entanto, anticorpos monoclonais (produzidos em laboratório) precisam ser importados e têm custo elevado, fora do alcance dos pesquisadores naquele primeiro momento. Em vez de desistir, ou ficar esperando os anticorpos chegarem, o grupo seguiu por outro caminho, que levou a uma solução ainda mais interessante, inteiramente nacional e que pode ser armazenada em temperatura ambiente, por não conter materiais biológicos.

O grupo desenvolveu um teste em que o vírus Sars-CoV-2 é impresso em uma base de polipropileno, um polímero depositado como uma camada sobre o sensor de óxido de zinco. Forma e tamanho do coronavírus são carimbados no polímero, e o material passa então por uma lavagem que elimina o vírus. Quando partículas virais presentes na saliva contaminada encaixam neste molde, também acontecem as alterações nos sinais elétricos, captadas pelo óxido de zinco. Simples assim, como nos brinquedos para crianças pequenas em que triângulos, quadrados e círculos precisam ser encaixados nos lugares correspondentes em uma base de plástico.

“O que nós medimos, com um potenciostato acoplado ao celular, ou a um laptop, é uma variação no sinal elétrico, que pode ser maior ou menor que o esperado na ausência da proteína ou do vírus. Em algumas doenças, a ligação entre anticorpo e antígeno gera uma corrente elétrica maior. No caso dos testes de Covid, essa ligação, bem como o encaixe do vírus no polímero, têm característica isolante, gerando uma corrente menor”, situa Mazon.

A impressão do polímero foi realizada a partir de vírus isolados pela equipe do Laboratório de Estudos de Vírus Emergentes da Universidade Estadual de Campinas (LEVE), coordenado por José Luiz Proença Módena. “Eu conheci o professor Módena porque as amostras de pacientes com zika foram doados pelo LEVE. Vi em uma reportagem que ele havia isolado o novo coronavírus e pedi as amostras, para tentar a impressão do vírus na camada polimérica”, relembra Mazon, explicando que, mais comumente, o que tem sido buscado é a impressão de anticorpos.

Eficácia, especificidade e sensibilidade do teste já foram comprovadas com o uso de vírus inativados, mas agora análises com vírus ativos devem ser realizadas nas instalações do LEVE, com os níveis de biossegurança necessários. “Embora o desenvolvimento deste teste esteja em uma etapa inicial, em longo prazo considero a solução muito promissora. Além de não precisar de refrigeração e da importação de anticorpos e antígenos, eles podem ser muito úteis em viroses futuras. Geralmente, uma das primeiras coisas que é feita é isolar o vírus. Assim, uma vez estabelecida a metodologia, fica fácil adaptar no caso de um novo vírus”, avalia a líder do grupo de pesquisa.

O grupo também deu continuidade ao desenvolvimento do imunossensor, a partir de parceria com startup que importou antígenos e anticorpos. Neste caso, o processo está mais adiantado, em etapa de validação pela verificação frente ao exame RT-PCR, considerado padrão-ouro na detecção do vírus. Essa verificação será feita em pacientes, no Hospital das Clínicas de Botucatu, com previsão de término até o final de janeiro e encaminhamento para aprovação e início da produção em escala.

O custo estimado para o imunossensor é de cerca de R$ 10 por teste, valor que deve ser ainda menor para o dispositivo com a camada polimérica. Os estudos são realizados em parceria também com o Centro de Desenvolvimento de Materiais Funcionais, apoiado pela Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp).

]]>
0
Como transformar tijolos em baterias e a sua parede em um carregador https://sinteses.blogfolha.uol.com.br/2020/08/20/como-transformar-tijolos-em-baterias-e-a-sua-parede-em-um-carregador/ https://sinteses.blogfolha.uol.com.br/2020/08/20/como-transformar-tijolos-em-baterias-e-a-sua-parede-em-um-carregador/#respond Thu, 20 Aug 2020 20:13:11 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/08/brick-wall-pixabay-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=120 Tijolos de barro são usados para construção há milhares de anos, e raramente tiveram outras finalidades. Agora, cientistas propuseram uma aplicação que une dois dos maiores desafios tecnológicos da atualidade: materiais de construção inteligentes e, principalmente, dispositivos de armazenamento adequados à transição energética para modelos mais sustentáveis.

Os pesquisadores, da Universidade de Washington em St. Louis, nos Estados Unidos, aproveitaram três características dos tijolos: porosidade, resistência mecânica e a presença de hematita (Fe2O3, óxido de ferro, ou a popular ferrugem). A partir delas, testaram uma rota de síntese para transformar pares de tijolos em eletrodos e, assim, armazenar energia, como em uma bateria.

Mais precisamente, a transformação resulta em um supercapacitor, mas quem sabe o que é um supercapacitor (eu, ao menos, desconhecia até bem pouco tempo atrás)?

Supercapacitores, como as baterias, são dispositivos para armazenar energia. No entanto, cada um tem suas propriedades e, assim, diferentes aplicações. Baterias armazenam maiores quantidades de energia, e supercapacitores são mais rápidos na carga e descarga. Em um veículo elétrico, por exemplo, supercapacitores são responsáveis pela entrega rápida da energia necessária ao início do movimento, mas quem mantém o carro andando é a energia armazenada nas baterias.

Outra vantagem dos supercapacitores é a sua durabilidade, já que suportam mais ciclos de carga e descarga. No caso dos tijolos, os pesquisadores estimaram essa capacidade em até 10 mil ciclos.

Embora chame a atenção o produto final, ou seja, o tijolo-supercapacitor, o principal resultado do estudo, publicado recentemente no periódico Nature Communications, é mostrar a viabilidade da rota de síntese. A rota adotada resulta na deposição de nanofibras de um polímero condutor de energia na superfície do tijolo e, assim, em um revestimento plástico que possibilita o armazenamento dessa energia.

Nesse processo – chamado de síntese em fase de vapor –, ácido clorídrico (HCl) vaporizado passa pelos poros do tijolo e interage com a hematita liberando um íon de ferro (Fe3+). Assim, é desencadeada a polimerização de monômeros (chamados de EDOT e disponíveis também como vapor) por uma rota que leva à deposição de um polímero (PEDOT, com o P acrescentado vindo justamente de polímero) com as características desejadas: baixa resistência elétrica e estabilidade química e física.

Polimerização é o nome dado justamente à reação química que leva moléculas menores, os monômeros, a formarem cadeias maiores, os polímeros. São várias as formas de polimerização e, neste caso, o controle da reação para que se obtivesse o material condutor e estável foi o grande avanço da pesquisa.

Novos materiais – e novas rotas de síntese para materiais já existentes – são centrais no desenvolvimento de dispositivos de armazenamento que concretizem todo o potencial de fontes mais limpas de energia, como a solar e a eólica. A pesquisa da Universidade de Washington é um avanço nesta direção, embora seja o que se chama, em ciência, de prova de conceito, uma vez que o supercapacitor testado acendeu apenas uma pequena lâmpada de LED.

No entanto, segundo os autores, o método é escalonável, viável economicamente e versátil. Algumas das aplicações já sugeridas são na alimentação de sensores, etiquetas (tags) de sistemas de comunicação RFID (identificação por rádio frequência), microrrobôs e outros microdispositivos embutidos em edifícios e cidades inteligentes.

]]>
0
Detergente e polímero naturais matam bactérias sem agredir o ambiente https://sinteses.blogfolha.uol.com.br/2020/03/21/detergente-e-polimero-naturais-matam-bacterias-sem-agredir-o-ambiente/ https://sinteses.blogfolha.uol.com.br/2020/03/21/detergente-e-polimero-naturais-matam-bacterias-sem-agredir-o-ambiente/#respond Sat, 21 Mar 2020 19:20:18 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/03/crisiane.jpeg https://sinteses.blogfolha.uol.com.br/?p=99 A resistência de bactérias a antibióticos e outros agentes antimicrobianos é um dos principais desafios de saúde pública em todo o mundo –depois, claro, da emergência com a Covid 19.

Estimativas para 2050 apontam mais de 10 milhões de mortes por ano causadas por bactérias resistentes. Neste cenário, nanomateriais aparecem como grande esperança, devido a características físicas e químicas únicas.

No entanto, a maior parte das nanopartículas com fins bactericidas têm metais em sua composição, que podem se acumular no organismo humano, ou usam surfactantes de origem sintética, majoritariamente derivados de petróleo. Esses materiais podem causar danos ao ambiente e, também, acarretar altos custos de produção.

Em busca de alternativas, o Grupo de Biotecnologia Microbiana do Instituto de Química de São Carlos (IQSC) da Universidade de São Paulo (USP) pesquisa há mais de 10 anos surfactantes de origem biológica, os biossurfactantes. Uma parceria com o Grupo de Bioquímica e Biomateriais do IQSC acaba de resultar em nanopartículas que combinam um desses biossurfactantes, um ramnolipídio, a um polímero também de origem natural, a quitosana.

Os resultados obtidos são superiores a cada um dos materiais usado isoladamente no combate a bactérias do gênero Staphylococcus, frequentemente envolvidas em infecções hospitalares resistentes a antibióticos.

“Como ambas as moléculas apresentam ação antimicrobiana frente a patógenos de interesse, como o Staphylococcus aureus, pensamos em combiná-las visando aumentar a atividade e fornecer uma nova alternativa no controle de patógenos”, explica Marcia Nitschke, docente do IQSC e uma das coordenadoras da pesquisa. Ela destaca também que uma das características importantes das nanopartículas é a maior área de superfície em relação ao volume, o que aumenta a área de interação com a célula bacteriana.

Surfactantes são uma classe de compostos químicos muito utilizados em vários setores industriais e, principalmente, como matéria-prima dos detergentes domésticos. A palavra deriva do fato de ser um agente de atividade superficial (em inglês, “surface active agent”), um composto com capacidade de alterar as propriedades superficiais e na interface de um líquido com um outro meio.

Os biossurfactantes são produzidos por microrganismos como bactérias, fungos e leveduras, e, no caso específico da pesquisa da USP, pela bactéria Pseudomonas aeruginosa. Em relação aos surfactantes sintéticos, os ramnolipídios e outros biossurfactantes têm como vantagens a baixa toxicidade e a biodegradabilidade, juntamente à atividade antimicrobiana, antiadesiva –que dificulta a formação dos biofilmes– e disruptiva do biofilme já formado.

Já a quitosana é um biopolímero obtido da quitina, elemento estrutural na carapaça (exoesqueleto) de crustáceos e insetos. A substância também está presente em fungos e em moluscos, como a lula, fonte da quitosana usada na pesquisa. “A quitosana tem diversas atividades biológicas importantes, como ser antioxidante, anti-inflamatória, anticoagulante, antitumoral e ter atividade antimicrobiana, foco principal do nosso trabalho”, explica Crisiane Marangon, autora da tese de doutorado que produziu e analisou as nanopartículas. O trabalho teve a participação também de grupo de pesquisa em biofilmes da Universidade de Aarhus, na Dinamarca.

As nanopartículas combinando ramnolipídios e quitosana demonstraram desempenho superior na eliminação tanto de bactérias planctônicas quanto de biofilmes. Microrganismos planctônicos são aqueles vivendo livres em suspensão, mas a grande maioria das bactérias vive em comunidades aderidas a superfícies, formando os biofilmes.

“Biofilmes são muito comuns. O lodo no banheiro é um biofilme, o musgo que cobre uma rocha em um rio… A sensação de uma película nos dentes depois de algum tempo sem escovar também é um biofilme. Eles se formam em qualquer superfície úmida e com nutrientes para as bactérias, seja abiótica, como a superfície de um cateter, seja biótica, como o pulmão na fibrose cística”, exemplifica Marangon.

As autoras da pesquisa registram que mais de 60% das infecções microbianas em seres humanos e 80% das infecções hospitalares por dispositivos médicos contaminados têm relação com a formação de biofilmes.

Nos biofilmes, as bactérias produzem uma matriz extracelular que serve de barreira à ação de agentes antimicrobianos. Como a maior parte dos agentes antimicrobianos tem como alvo as bactérias planctônicas, há uma lacuna no combate aos biofilmes. “É urgente o desenvolvimento de estratégias com foco nas estruturas celulares, em substituição aos processos celulares”, afirma Marangon.

“Processos celulares envolvem o metabolismo. A penicilina, por exemplo, atua impedindo a formação de nova parede celular bacteriana, mas a célula precisa estar em crescimento, no estado planctônico. Como nos biofilmes há uma diminuição da taxa metabólica dos microrganismos, são necessárias alternativas que tenham como alvo as estruturas celulares. Um exemplo é a desintegração da matriz extracelular para que os compostos antimicrobianos atinjam a população bacteriana protegida por essa barreira”, explica a pesquisadora.

No caso das nanopartículas de quitosana, a adição do ramnolipídio resultou em partículas menores, mais estáveis e com maior densidade de carga elétrica positiva em sua superfície, o que também favorece a interação com as células bacterianas, carregadas negativamente. Já a quitosana favorece o acúmulo das nanopartículas na superfície do biofilme. No entanto, ela tem dificuldade em penetrar a matriz extracelular até as camadas mais profundas, função que é desempenhada pelo ramnolipídio transportado até ali pela quitosana.

Os resultados já obtidos indicam a possibilidade de aplicações médicas e, também, na indústria alimentícia.

Na área médica, algumas possibilidades são a desinfecção de superfícies de dispositivos como cateteres e próteses e, também, de infecções na pele.

Na indústria alimentícia, biofilmes formados sobre equipamentos são uma importante fonte de contaminação. Os compostos também podem vir a ser usados como aditivos, para controle da contaminação diretamente no alimento.

Os grupos da USP estão dando continuidade às pesquisas na direção dessas aplicações e, também, com outros compostos bioativos que possam abranger outros tipos de bactérias.

O artigo com os resultados da pesquisa de doutorado de Marangon, intitulado “Combination of Rhamnolipid and Chitosan in Nanoparticles Boosts Their Antimicrobial Efficacy”, foi publicado no último mês de janeiro na revista científica ACS Apllied Materials & Interfaces.

]]>
0
O que aprendi com as máscaras respiratórias (além de não usar) https://sinteses.blogfolha.uol.com.br/2020/03/11/o-que-aprendi-com-as-mascaras-respiratorias-alem-de-nao-usar/ https://sinteses.blogfolha.uol.com.br/2020/03/11/o-que-aprendi-com-as-mascaras-respiratorias-alem-de-nao-usar/#respond Wed, 11 Mar 2020 15:01:49 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/03/corona-4912807_640-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=94 Há dois meses, durmo e acordo com máscaras faciais.

Não fui infectada pelo novo coronavírus, tampouco tenho qualquer outra condição de saúde que me obrigue a usá-las, felizmente. A condição que levou meu pensamento às máscaras durante tantos dias e noites desde as primeiras notícias sobre o vírus foi a persistência –talvez teimosia– em descobrir de que material são feitas.

O início da epidemia coincidiu com os primeiros dias deste Sínteses, em janeiro. Logo surgiram as primeiras notícias sobre escassez de máscaras no mercado e, também, guias sobre a pertinência de usá-las para proteção contra covid-19 –nome que a doença viria a receber só depois, em fevereiro. Entusiasmada com a missão de descobrir e relatar de que o mundo é feito, embarquei na empreitada para produzir uma nota sobre o material das máscaras. Mas foi muito mais difícil do que eu imaginava descobrir.

Até agora, não sou capaz de registrar aqui informações tão precisas e detalhadas quanto gostaria. Falhas minhas podem ter contribuído, mas me parece que segredos industriais e a especialização da prática científica foram mais importantes. O que consigo contar é que as máscaras em geral são produzidas com tecidos não tecidos (já explico!) que têm polímeros como matéria-prima (frequentemente polipropileno), em várias camadas (três ou quatro, comumente).

Mas aprendi muitas outras coisas interessantes durante minha busca. A primeira é que existe toda uma área de pesquisa dedicada à filtração e aos chamados meios, ou elementos, filtrantes. Porque é disto que se trata: de filtração do ar, ou seja, da passagem do fluxo de ar através de um material poroso no qual ficam retidas as partículas que não atravessam os poros.

O tamanho desses poros –junto com outras variáveis– define um outro aspecto relevante da nossa pesquisa: a diversidade de máscaras existentes. Dentre elas, temos as máscaras cirúrgicas, que se distinguem de respiradores –ou peças faciais filtrantes (PFF)– essencialmente por não estarem sujeitas às mesmas normas rigorosas e não passarem pelos testes que garantem a certificação em diferentes níveis de proteção. Além disso, as máscaras não se ajustam perfeitamente ao rosto, permitindo assim a passagem do ar pelas bordas.

No caso dos respiradores, dentre os diferentes níveis de segurança, o PFF2 –ou N95 segundo a legislação dos Estados Unidos ou P2 para filtros de respiradores reutilizáveis– é o mais indicado para agentes biológicos com características como as do coronavírus.

No entanto, nunca é demais reforçar que as máscaras não são a principal medida de proteção e podem, inclusive, gerar uma falsa sensação de segurança. O mais importante é lavar as mãos e outras medidas de higiene, deixando as máscaras, especialmente em caso de escassez, para as pessoas infectadas e os profissionais de saúde.

Voltando aos materiais, falemos dos tecidos não tecidos, ou TNT, aquele que todos já usamos como toalha de mesa, fantasia ou em alguma outra incursão em atividades de decoração, artesanato ou trabalhos escolares.

A definição é feita em oposição aos tecidos. Nestes, fios estão entrelaçados em ângulos de 90 graus, posicionados longitudinal (no sentido do comprimento do tecido) e transversalmente (largura). Já os não tecidos são véus ou mantas de fibras ou filamentos que podem estar orientados direcionalmente ou posicionados ao acaso, mas que são consolidados por métodos mecânicos, químicos ou térmicos, e não, justamente, por tecelagem. A fabricação usa diferentes rotas e matérias-primas.

O uso de tecidos não tecidos nos dispositivos de proteção respiratória está relacionado ao seu baixo custo –o que justifica a aplicação sobretudo no caso de descartáveis–, mas eles também apresentam resultados superiores em termos de filtração de bactérias e outros microrganismos e de permeabilidade.

No caso das máscaras e respiradores, polímeros são a matéria-prima mais comum dos tecidos não tecidos, ou polímeros associados a fibras de celulose.

Nos respiradores –e algumas vezes é isto que os difere das máscaras cirúrgicas–, há a associação de não tecidos obtidos por diferentes processos de produção. Entre duas camadas externas obtidas por fiação contínua (método conhecido como “spunpond”) está um meio filtrante produzido por sopro (“meltblown”), o que resulta em poros menores e, assim, na maior capacidade de filtração. Outros materiais utilizados como filtro são papel e carvão ativado, por exemplo.

As nanofibras são a tecnologia emergente no campo dos meios filtrantes fibrosos. Por suas dimensões reduzidas, dentre outras características, elas diminuem também o tamanho das partículas que podem ser retidas, chegando justamente à escala nanométrica. Além disso, permitem a associação de materiais ativos, que vão além da barreira física dos dispositivos comuns.

Ana Cláudia Canalli Bortolassi buscou, durante seu doutorado, concluído no ano passado, a obtenção de meios filtrantes mais eficientes, com efeito bactericida e capazes de reter partículas nanométricas. Para tanto, adicionou a um substrato de tecido não tecido macroscópico nanofibras produzidas pelo método de eletrofiação (“electrospinning”). Os filtros desenvolvidos têm, como aplicação almejada, justamente máscaras e sistemas de purificação de ar.

Além da obtenção de fibras com superfície de contato muito maior que as produzidas por outros métodos, a eletrofiação permite a adição de agentes bactericidas ao polímero usado como matéria-prima. Na pesquisa de Bortolassi, os aditivos usados foram dióxido de titânio, óxido de zinco e nitrato de prata. Hoje pesquisadora visitante na Deakin University, Austrália, a brasileira registra que o desenvolvimento de meios filtrantes com múltiplas funcionalidades e aplicações é um dos focos da pesquisa na área, junto à obtenção de maior eficiência e menor queda de pressão.

]]>
0
Canudos reciclados agregam segurança e economia à produção de concreto https://sinteses.blogfolha.uol.com.br/2020/03/04/canudos-reciclados-agregam-seguranca-e-economia-a-producao-de-concreto/ https://sinteses.blogfolha.uol.com.br/2020/03/04/canudos-reciclados-agregam-seguranca-e-economia-a-producao-de-concreto/#respond Wed, 04 Mar 2020 17:43:27 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/03/fibras-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=87 Como milhões de outras pessoas, Rafael Salomão assistiu e se impressionou com o vídeo de biólogos retirando um canudo de plástico da narina de uma tartaruga marinha na Costa Rica. Publicadas em agosto de 2015, as imagens desencadearam um movimento mundial pelo banimento dos canudinhos e de combate à poluição plástica. Salomão pôde dar a sua contribuição à solução do problema, ao propor um uso nobre para os canudos descartados: como aditivo para diminuir riscos de explosão e promover economia de energia no processo de fabricação de concretos refratários para a indústria siderúrgica.

Como muitos certamente já viram em canteiros de obras, a preparação do concreto envolve a adição de água para homogeneização das matérias-primas e, também, para ativar a reação química que leva o cimento a unir as partículas do concreto e consolidar todo o sistema. Na indústria siderúrgica, a hidratação também permite que o concreto flua e seja moldado em formatos complexos, para revestir equipamentos que suportam temperaturas de até 1.800ºC.

Após o cimento endurecer, a água utilizada na mistura permanece na estrutura do concreto. Na siderurgia, isto gera problemas durante o aquecimento inicial do revestimento de concreto refratário, da temperatura ambiente à temperatura de uso. Na primeira etapa, chamada de secagem –com temperaturas de 100 a 200ºC–, a baixa permeabilidade do concreto impede que o vapor de água saia da estrutura, e a pressão exercida pode gerar explosões. Na construção civil, o mesmo problema aparece no caso de incêndios, em que vigas e pilastras de concreto podem explodir e, com isso, enfraquecer toda a estrutura de um edifício.

Fibras poliméricas são usadas como aditivos para acelerar o processo de secagem do concreto e evitar explosões desde o final da década de 1980. Durante o seu doutorado, realizado de 2002 a 2005 junto ao Grupo de Engenharia de Microestrutura de Materiais da Universidade Federal de São Carlos (UFSCar), Salomão pesquisou justamente os melhores materiais e parâmetros de fabricação para essas fibras. Dentre outros resultados, os pesquisadores desenvolveram um equipamento para produzir as fibras em escala de laboratório e, assim, facilitar o teste de diferentes materiais.

Uma conclusão importante foi que, quanto menor a temperatura de fusão da fibra, melhor seu desempenho no concreto. A ação do aditivo se dá pela formação de canais nos lugares onde a fibra derrete e, com o aumento ainda maior da temperatura, se decompõe, deixando espaço para a saída do vapor de água. “Quanto menor a temperatura de fusão da fibra, menor a temperatura necessária para a saída do vapor e, assim, menores a pressurização e o risco de explosão”, explica Salomão.

“Um bom paralelo com o risco de explosão caso a pressão do vapor de água não seja aliviada é uma panela de pressão. Uma panela com válvula entupida é como o concreto sem fibras: se continuar a aquecer, explode. As fibras atuam como a válvula de segurança que derrete e se abre antes da panela explodir. Se a válvula for feita de um polímero com alto ponto de fusão, a panela explodirá antes dela derreter”, compara o pesquisador.

Os materiais dos canudos plásticos apresentam propriedades que dificultam sua reciclagem e a utilização na maior parte das aplicações, o que leva à necessidade de uma destinação especial para o material descartado, junto com a redução do consumo. Foi este o desafio que levou Salomão, desde 2010 professor do Departamento de Engenharia de Materiais da Escola de Engenharia de São Carlos (EESC) da Universidade de São Paulo (USP), a pensar em testá-los na produção de fibras para a secagem do concreto, utilizando o equipamento construído durante o seu doutorado. “Percebemos que havia uma fantástica oportunidade para gerar um duplo benefício ambiental, eliminando um resíduo do ambiente e economizando energia no processamento dos concretos”, relata o pesquisador.

Obter fibras com a resistência mecânica e o diâmetro necessários foi o maior desafio, durante os experimentos que aconteceram entre 2018 e 2019. A dificuldade vem justamente da degradação térmica que os canudos sofrem durante a reciclagem, que dificulta os processos de fiação e estiramento das fibras.

Mas os resultados não poderiam ser melhores: as fibras de material reciclado apresentaram desempenho significativamente superior às convencionais, derretendo a 140ºC, quando as demais fundem ao atingir 170ºC. Além disso, uma das propriedades que caracteriza o material dos canudos como inferior –o chamado índice de fluidez, MFI, do inglês “melting flow index”–, por ser menos rígido e resistente, nesta aplicação faz com que as fibras fundidas resultem em um líquido pouco viscoso e, assim, facilmente deformado pelo vapor pressurizado em seu caminho até a superfície do concreto. “O que, na enorme maioria dos casos, é uma desvantagem, nesta aplicação é uma importante vantagem técnica”, destaca Salomão.

Devido ao tamanho elevado das peças de concreto refratário utilizadas na indústria siderúrgica, o aquecimento inicial leva alguns dias, em que se queima combustível sem produzir aço. Com o baixo ponto de fusão das fibras de material reciclado e consequente saída de vapor em temperaturas mais baixas, o processo torna-se, além de mais seguro, mais rápido e, assim, mais econômico.

Os resultados da pesquisa acabam de ser publicados no periódico científico Ceramics International, em artigo assinado também por Victor Carlos Pandolfelli, professor no Departamento de Engenharia de Materiais da UFSCar e orientador de Salomão no doutorado. Apesar das fibras terem sido testadas apenas em concretos refratários, os resultados obtidos indicam a possibilidade de uso na construção civil. Assim, a quantidade de fibras necessária seria suficiente para empregar o volume total de canudos consumido mundialmente a cada ano e, segundo os autores, outros tipos de polímero também poderiam ser reciclados para essa aplicação.

Para o futuro, Rafael Salomão conta que as fibras serão testadas em outros tipos de concretos refratários e em combinação com outros aditivos de secagem. Há também planos para testar os efeitos antes do aquecimento, para checar se as fibras contribuem para o aumento da resistência do concreto ao impacto e à fratura. No entanto, há desafios anteriores a serem superados. “Como em qualquer processo baseado em reciclagem de materiais, o grande desafio é a coleta seletiva dos canudos e seu tratamento para evitar a contaminação com outros tipos de polímeros, que pode inviabilizar o reprocessamento”, registra o pesquisador.

]]>
0
Conheça pesquisadora por trás de material útil na guerra e no espaço https://sinteses.blogfolha.uol.com.br/2020/03/02/conheca-pesquisadora-por-tras-de-material-util-na-guerra-e-no-espaco/ https://sinteses.blogfolha.uol.com.br/2020/03/02/conheca-pesquisadora-por-tras-de-material-util-na-guerra-e-no-espaco/#respond Mon, 02 Mar 2020 10:05:09 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/03/kevlar-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=84 Para começar esta semana –que termina no Dia Internacional da Mulher– inspirada pela liderança feminina do sequenciamento genético em apenas 48 horas do coronavírus que chegou ao Brasil, compartilho dica de leitura sobre a trajetória de outra cientista, Stephanie Louise Kwolek.

A Sociedade Brasileira de Pesquisa em Materiais (SBPMat) acaba de publicar seu boletim mensal e, nele, conhecemos a história do Kevlar, material usado em coletes à prova de balas, cordas destinadas a missões espaciais, botas de bombeiros e raquetes, dentre várias outras aplicações. A fibra sintética polimérica lançada em 1982 pela DuPont é um desdobramento de uma descoberta feita por Kwolek em 1965, no Laboratório de Pesquisa Pioneira em Fibras Têxteis da empresa, nos Estados Unidos.

Conheça os detalhes sobre a ciência por trás deste material que combina grande resistência e leveza no boletim da SBPMat.

]]>
0
Grupo brasileiro desenvolve material para próxima geração de baterias https://sinteses.blogfolha.uol.com.br/2020/02/19/grupo-brasileiro-desenvolve-material-para-proxima-geracao-de-baterias/ https://sinteses.blogfolha.uol.com.br/2020/02/19/grupo-brasileiro-desenvolve-material-para-proxima-geracao-de-baterias/#respond Wed, 19 Feb 2020 11:00:56 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/02/eletrolito-300x215.jpeg https://sinteses.blogfolha.uol.com.br/?p=72 Como registrado aqui em Sínteses, a revista Nature elegeu as baterias de estado sólido um dos 10 temas de pesquisa para prestar atenção em 2020. Esses dispositivos são considerados o futuro das baterias, diante das novas demandas colocadas pela transição energética para fontes renováveis e sustentáveis.

A Sociedade Brasileira de Pesquisa em Materiais (SBPMat) destacou recentemente resultados que mostram a participação da ciência brasileira nesse esforço de pesquisa e desenvolvimento. O trabalho divulgado enfrenta um dos principais obstáculos para as baterias de estado sólido: a baixa condutividade dos eletrólitos sólidos em temperatura ambiente.

Eletrólitos são o meio de propagação da corrente elétrica entre os eletrodos positivo e negativo de uma bateria, pela mobilidade de íons. Nas baterias de íons de lítio que revolucionaram o cenário dos dispositivos eletrônicos portáteis como smartphones e laptops –recebendo, inclusive, o Prêmio Nobel de Química em 2019–, o eletrólito convencionalmente é líquido ou gel. Eletrólitos sólidos trazem maior segurança, evitando vazamentos de substâncias tóxicas e explosões. Além disso, podem resultar em maiores densidade energética e durabilidade das baterias. Uma classe específica de materiais, os eletrólitos sólidos poliméricos, acrescentam leveza e flexibilidade a essas vantagens, o que viabiliza dispositivos menores e com formatos diversos.

O desafio é, portanto, desenvolver eletrólitos sólidos com todas as suas vantagens aliadas a altos valores em termos de condutividade iônica. “O material na forma líquida e em gel tem condutividade iônica, de forma geral, cerca de 20 a 30 vezes maior quando comparado ao mesmo material no seu estado sólido”, revela Flavio Leandro de Souza, professor da Universidade Federal do ABC (UFABC) e pesquisador também do Laboratório Nacional de Nanotecnologia (LNNano).

A notícia da SBPMat conta justamente como um grupo de pesquisadores da UFABC liderados por Souza chegou a um material que bate os recordes conhecidos de condutividade iônica para eletrólitos sólidos poliméricos. A descoberta foi reportada no final de 2019 no periódico The Journal of Physical Chemistry Letters, naquele escolhido como artigo de destaque pela SBPMat em seu último boletim.

O material desenvolvido pelo grupo brasileiro é um filme transparente, leve e flexível de polietileno obtido por um método de fabricação simples, econômico e facilmente escalável para aplicação industrial. Além das vantagens já mencionadas, ele é feito com ácido cítrico e outros materiais que não apresentam riscos quando descartados. O principal avanço veio da substituição de um átomo de silício no centro da estrutura polimérica (chamado de átomo de coordenação) por um átomo de outro elemento, o germânio.

Embora o tipo de polímero tenha permanecido o mesmo, alterações na estrutura eletrônica decorrentes dessa substituição elevaram a condutividade e, também, reduziram em 50% a energia de ativação necessária para colocar os íons em movimento, o que pode reduzir o tempo para carregamento da bateria. Junto com a síntese do material, a pesquisa investiu na sua caracterização, para compreensão profunda, por exemplo, do papel do átomo de coordenação na mobilidade da cadeia polimérica e, assim, na condutividade iônica, já que a vibração da cadeia influencia o movimento dos íons pela matriz polimérica.

A existência do material, no entanto, não significa que os desafios envolvidos na produção de baterias de estado sólido estejam todos superados. Uma rápida pesquisa sobre o tema na Internet mostra que, considerando apenas janeiro deste ano, há uma quantidade muito grande de informes sobre resultados relativos a diferentes aspectos a serem equacionados, indicando a complexidade da empreitada.

No caso do grupo da UFABC, o próximo passo é a aplicação do material em diferentes tipos de dispositivos eletroquímicos, como as baterias, e eletrocrômicos, como janelas que mudam de cor pela aplicação de uma corrente elétrica. “De certa forma, o teste mais importante após qualquer desenvolvimento ou descoberta é saber se as vantagens do novo material –ou melhora em um material já existente– se estendem à sua aplicação em dispositivos. Os desafios são sempre maiores quando passamos para esta etapa”, situa Souza. “Como o material que desenvolvemos é bastante versátil e desperta interesse para diferentes aplicações, vamos buscar parceiros também para esta etapa, além de produzirmos alguns dispositivos nós mesmos”, revela.

Na área comercial, vale registrar que, de 26 a 28 de fevereiro, acontece no Japão a principal feira de baterias recarregáveis, a Battery Japan 2020, e os dispositivos de estado sólido ocupam uma parte significativa da programação.

Sínteses, como prometido, acompanhará as novidades. Enquanto isso, para saber mais detalhes do material desenvolvido pelos pesquisadores brasileiros, confira a notícia publicada no site da SBPMat. A pesquisa também foi divulgada na última edição da revista Pesquisa Fapesp.

]]>
0
Entenda por que um robô que transpira é mais que mera curiosidade https://sinteses.blogfolha.uol.com.br/2020/02/04/entenda-por-que-um-robo-que-transpira-e-mais-que-mera-curiosidade/ https://sinteses.blogfolha.uol.com.br/2020/02/04/entenda-por-que-um-robo-que-transpira-e-mais-que-mera-curiosidade/#respond Tue, 04 Feb 2020 14:30:11 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/02/gotas-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=53 A Science publicou há alguns dias o vídeo de um robô capaz de algo inusitado: transpirar. A produção divulga artigo de pesquisa publicado em 29 de janeiro na Science Robotics, revista especializada do mesmo grupo, o que indica a existência de alguma importância no suor robótico.

A máquina em questão, uma garra para segurar e manipular objetos, é um exemplar do que vem sendo chamado de robótica soft, ou flexível. O objetivo é produzir robôs com materiais macios, para ambientes e usos em que os rígidos não são viáveis. Dentre essas aplicações destaca-se a interação com sistemas biológicos, incluindo o corpo humano, já que esses materiais são especialmente adequados à interação com tecidos vivos, sem danificá-los.

Um dos desafios no desenvolvimento dessa nova geração de autômatos é a sua refrigeração. O resfriamento é necessário não apenas durante o uso em ambientes extremos, com altas temperaturas, por exemplo, mas porque a própria operação esquenta os dispositivos, tornando-os menos precisos e confiáveis.

Como é comum na robótica soft, a inspiração para resolver o problema veio da natureza. Os pesquisadores –da Universidade Cornell e outras instituições estadunidenses– buscaram reproduzir o mecanismo de resfriamento evaporativo dos humanos e outros mamíferos. Para baixar nossa temperatura corporal, suamos, e a evaporação do suor promove a queda de temperatura na superfície em que acontece –nossa pele, no caso. E é isto que acontece no robô, produzido a partir de hidrogel, impressão 3D e muita criatividade.

A impressão 3D permitiu fabricar estruturas com grande precisão, como o formato plissado de cada dedo da garra, que aumenta a amplitude de movimento; o canal embutido por onde flui a água que, ao mesmo tempo, controla o movimento do robô e é o líquido a ser evaporado; e texturas que ampliam a área de superfície do dispositivo e, assim, a taxa de evaporação.

Já o hidrogel, além de ser o material macio e flexível que se conforma a superfícies delicadas sem aplicar grande tensão sobre elas, é o que permite a transpiração autônoma e controlada. Neste caso, ele configura um material inteligente (smart material), sendo ao mesmo tempo um sensor (de temperatura), um atuador (responsável pelo movimento) e o promotor da termorregulação do dispositivo.

De fato, foram dois os materiais utilizados, com respostas opostas à variação de temperatura.

O corpo de cada dedo da garra, onde está o canal com água pressurizada, é feito de um hidrogel que perde água quando aquecido, encolhendo e enrijecendo. Na superfície, um outro hidrogel tem o comportamento inverso, absorvendo água em temperaturas elevadas. Essa absorção faz com que o material inche, e que microporos inseridos em sua estrutura se expandam e abram, permitindo a saída da água para a superfície do robô, a evaporação e o consequente resfriamento. A combinação de enrijecimento e relaxamento, por sua vez, faz com que o dedo mantenha sua forma e, assim, a função de manipular objetos.

Segundo os pesquisadores, a cópia superou o modelo: a capacidade de resfriamento do dispositivo é 300% superior àquela encontrada em sistemas biológicos. Com água originalmente a 70ºC, a queda foi de 21ºC em apenas 30 segundos!

Embora ainda existam ajustes a serem feitos, os autores do artigo já vislumbram outras aplicações para a capacidade de termorregulação e liberação seletiva de líquidos, como a adição de outras substâncias à água, que seriam liberadas junto com ela pelo aquecimento.

Confira no vídeo da Science o robô em ação.

]]>
0
De piscina de íons a bebedouro de bactérias, o potencial do hidrogel https://sinteses.blogfolha.uol.com.br/2020/01/23/de-piscina-de-ions-a-bebedouro-de-bacterias-o-potencial-do-hidrogel/ https://sinteses.blogfolha.uol.com.br/2020/01/23/de-piscina-de-ions-a-bebedouro-de-bacterias-o-potencial-do-hidrogel/#respond Thu, 23 Jan 2020 21:52:07 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/01/sensor-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=43 Hidrogel é um termo relativamente conhecido quando designa o produto usado em intervenções para aumento de coxas e nádegas. Infelizmente, a fama vem principalmente das complicações, que já resultaram inclusive na morte de pacientes. Também é um hidrogel o responsável pelo poder absorvente das fraldas descartáveis, e são feitas de hidrogel as bolinhas usadas para manter vasos sempre com água. Outro hidrogel familiar é a gelatina.

Além desses usos mais comuns, esta classe de materiais tem um campo de aplicações na fronteira do conhecimento que vai de pele artificial a tijolo, como ilustram pesquisas divulgadas recentemente.

Hidrogéis são redes tridimensionais de polímeros –naturais ou sintéticos– capazes de reter grande quantidade de água em sua estrutura. Outra característica importante é a elasticidade desses compostos.

Uma das novas aplicações, desenvolvida no Canadá, é um sensor que, grudado à pele, transforma estímulos mecânicos, como tensão e deformação, e outros sinais, como umidade, em sinais elétricos. O dispositivo foi batizado de AISkin (de pele iônica artificial em inglês), e os primeiros resultados foram publicados na revista Materials Horizons.

A previsão é que o sensor possa incrementar tecnologias vestíveis em áreas diversas. No artigo, os cientistas relatam testes bem-sucedidos com a detecção do movimento de um dedo da mão, o que poderia ajudar, na área da saúde, o acompanhamento de processos de reabilitação, por exemplo. Outro teste foi feito com um touch pad (painel sensível ao toque) grudado à mão de uma pessoa, no qual foi possível controlar ações em um jogo eletrônico no computador.

A inspiração para o novo sensor veio diretamente da pele humana, uma rede polimérica com presença de uma variedade de sensores neurais. Esses sensores transformam os estímulos recebidos –como um aperto de mão ou a aproximação do fogo– em sinais elétricos pelo transporte de íons (átomos eletricamente carregados, positiva ou negativamente, por terem perdido ou ganhado elétrons). Essa capacidade é chamada de transdução –a transformação de estímulo ou sinal de um tipo em outro.

As peles artificiais mais comuns são eletrônicas, fazendo essa transmissão de informações com base em elétrons, e não íons. Isto, segundo os criadores da AISkin, resulta em uma lacuna entre a pele humana e a alternativa artificial, e é para diminuir essa distância que o novo dispositivo foi pensado. Nele, o meio aquoso do hidrogel é que garante a movimentação dos íons entre duas camadas, uma com carga negativa e outra positiva, e consequentemente viabiliza a transdução dos estímulos recebidos em sinais elétricos.

Neste primeiro caso, portanto, o hidrogel é a estrutura que sustenta um sistema complexo junto à nossa pele. Em uma segunda aplicação, também divulgada nos últimos dias, ele hidrata e alimenta bactérias responsáveis pela produção de tijolos de concreto!

A pesquisa foi realizada na University of Colorado Boulder, Estados Unidos, e publicada na revista Matter. Os cientistas colocaram em um molde areia e bactérias que, após um processo chamado de biomineralização, resultaram em um cimento vivo.

Molde preenchido com areia, bactérias e hidrogel
Molde preenchido com areia, bactérias e hidrogel (Crédito: College of Engineering and Applied Science at University of Colorado Boulder)

O material é mais sustentável que o concreto convencional, cuja produção emite gases de efeito estufa (CO2). Além disso, ele tem potencial de aplicação em materiais inteligentes, que detectem, por exemplo, níveis de toxinas no ambiente.

Na biomineralização, carbonato de cálcio (CaCO3) é precipitado pelas bactérias, conferindo ao material maior resistência à fratura. É um processo análogo ao que acontece na produção das conchas dos moluscos, dentre outros seres vivos que produzem minerais. Para a fabricação de concreto, também está na mistura o hidrogel, que fornece a água e os nutrientes necessários à manutenção da vida das bactérias.

Dentre possíveis desenvolvimentos para o novo material, os pesquisadores propõem o uso em ambientes com recursos limitados e, até mesmo, em outro planeta: Marte, para onde poderia ser necessário transportar apenas as bactérias. E hidrogel.

]]>
0