Sínteses https://sinteses.blogfolha.uol.com.br Da Idade da Pedra à 'febre do grafeno', um blog sobre tudo aquilo de que o mundo é feito Sun, 21 Mar 2021 19:10:18 +0000 pt-BR hourly 1 https://wordpress.org/?v=4.7.2 Na twistrônica, Brasil enxerga além https://sinteses.blogfolha.uol.com.br/2021/03/10/na-twistronica-brasil-enxerga-alem/ https://sinteses.blogfolha.uol.com.br/2021/03/10/na-twistronica-brasil-enxerga-alem/#respond Wed, 10 Mar 2021 14:32:29 +0000 https://sinteses.blogfolha.uol.com.br/files/2021/03/rede_capa-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=169 O grafeno é pop. Devida ou indevidamente alardeado, é de fato imenso o potencial tecnológico do material, por propriedades como leveza, flexibilidade, dureza e capacidade de conduzir eletricidade.

Apesar de toda a agitação, o grafeno nada mais é que uma camada extremamente fina de grafite, com apenas um átomo de espessura. Isolado e caracterizado em detalhes pela primeira vez em 2004, suas propriedades levaram a uma onda de estudos em todo o mundo, incluindo outros materiais bidimensionais e lamelares.

“Materiais com estrutura lamelar como a do grafeno são vários na natureza. A pedra-sabão, das esculturas de Aleijadinho, tem estrutura lamelar, por exemplo. Eles aparecem para nós como tridimensionais porque estão empilhados, como o grafeno no grafite. Quando escrevemos com um lápis, desfolhamos o grafite, marcando nosso papel com grafeno”, explica Ado Jório, da Universidade Federal de Minas Gerais (UFMG).

Jório lidera o grupo de pesquisa cujo trabalho com grafeno ocupou, em 17 de fevereiro, um dos lugares mais disputados pela ciência mundial: a capa da revista Nature. A propriedade investigada pelo grupo foi a supercondutividade que aparece quando duas folhas de grafeno são empilhadas e uma delas é rodada em um ângulo de exatamente 1,1 grau.

Para entender o trabalho do grupo brasileiro, façamos uma experiência simples. Coloque as mãos uma sobre a outra, palma com palma. Agora, gire a mão direita ligeiramente, deslizando-a sobre a mão esquerda.

Com as nossas mãos, nada acontece, exceto o deslocamento dos dedos de uma mão em relação aos da outra, visualmente. Porém, quando cientistas fazem a mesma coisa com duas folhas de grafeno, um mundo de novas possibilidades passa a existir.

O grafeno é uma folha plana em que os átomos de carbono estão organizados em rede, em uma estrutura hexagonal. É esta estrutura cristalina – e, consequentemente, as estruturas eletrônica e vibracional – que conferem ao material suas propriedades únicas.

“A estrutura eletrônica e a estrutura vibracional, juntas, definem quase todas as propriedades dos materiais”, situa Jório. “Por que, em um óculos, a luz passa pela lente, mas não pela haste? Por que a blusa que você está usando é maleável, mas a armação do óculos é rígida? Por que a tela do seu celular é sensível ao toque?”, questiona o pesquisador. “A resposta a todas essas questões está na estrutura eletrônica e vibracional de cada material.”

Representação da super-estrutura criada pela rotação de uma folha de grafeno sobre outra
Representação da super-estrutura criada pela rotação de uma folha de grafeno sobre outra (Crédito: Ponor, CC BY-SA 4.0, via Wikimedia Commons)

A rotação (twist, em Inglês) da bicamada de grafeno faz com que a rede vire super-rede, na qual os hexágonos menores da rede original se transformam em uma estrutura hexagonal maior (como na imagem). O fenômeno de supercondutividade que resulta desta alteração foi verificado experimentalmente em 2018, ilustrando o surgimento e o potencial de um novo campo científico e tecnológico, a twistrônica.

Ado Jório conta que o termo, twistrônica, é próprio de materiais bidimensionais. Ele explica como, em um material tridimensional – um cubo, por exemplo –, as propriedades são da estrutura no interior deste material. Assim, se juntarmos dois cubos e rodarmos um em relação ao outro, podemos alterar algo nas superfícies que estão em contato, mas não o que está mais longe, no interior. “Mas, quando pegamos um material com um átomo de espessura e encostamos em outro, a influência é muito grande, e a orientação com a qual incluímos, por exemplo, a segunda folha de grafeno, o ângulo, tem um papel fundamental”, explica.

No caso do grafeno, portanto, é a rotação em exatamente 1,1 grau que torna o material supercondutor. Embora isto tenha sido constatado em 2018, ainda não há um modelo teórico para compreender porque o fenômeno acontece, o que é fundamental para controlá-lo e, assim, um dia poder aplicá-lo tecnologicamente em dispositivos de uso cotidiano. É nesta direção, de entender o que acontece, que vem a contribuição do artigo publicado na Nature, cujos resultados só foram possíveis por causa de um equipamento desenvolvido aqui no Brasil: o nanoscópio.

Jório conta que o que explica a supercondutividade – ou seja, a existência de materiais que conduzem eletricidade sem resistência e, assim, sem perdas – é o modo como a partícula eletrônica que percorre o material se acopla com a forma como o material vibra. “O que o nanoscópio trouxe pela primeira vez foi a possibilidade de gerar imagens e caracterizações da estrutura eletrônica e da estrutura vibracional com resolução justamente na escala nanoscópica. Agora, outros pesquisadores têm os dados para desenvolver um modelo teórico para explicar a supercondutividade na bicamada de grafeno rodada, fundamentado nas propriedades eletrônicas e vibracionais que nós mostramos como são”, detalha o pesquisador.

A resolução dos microscópios não permite ver nada menor que um mícron. Assim, o ganho do nanoscópio é justamente a possibilidade de enxergar estruturas e fenômenos que acontecem na ordem dos nanômetros, ou seja, em uma escala mil vezes menor que a do mícron.

A capacidade do nanoscópio está, fundamentalmente, relacionada ao tamanho da antena que faz a análise do material estudado. “O que fizemos foi uma nanoantena com uma tecnologia específica, que nós criamos. Esta nanoantena levou a um funcionamento muito melhor que o de qualquer outro nanoscópio existente no mundo e, assim, a imagens tão informativas, tão ricas, quanto as compartilhadas no artigo”, conta o professor da UFMG.

“Por outro lado, na modelagem matemática, o desafio está no fato das estruturas na super-rede serem grandes e exigirem, por isso, muita capacidade computacional”, acrescenta Jório. “O que o nosso artigo traz de muito valioso é tanto o ganho de resolução, do ponto de vista experimental, quanto o fato dos teóricos que trabalharam conosco terem feito um modelo capaz de calcular estruturas muito grandes, o que nenhum outro existente até agora tinha capacidade de fazer.”

No entanto, apesar da importância dos resultados para a continuidade do desenvolvimento da twistrônica, não é amanhã que teremos bicamadas de grafeno conduzindo energia por aí.

“Do surgimento de uma nova proposta, que é a twistrônica, a conseguirmos dominar a produção desse tipo de material de forma robusta o suficiente para utilização em aplicações tecnológicas, ainda há muito tempo de pesquisa e muito trabalho de engenharia pela frente”, esclarece Ado Jório. “É preciso fazer o material rodar neste ângulo exato, no tamanho que você precisa, dentro do dispositivo que você quer, e de forma estável, ou seja, sem que volte à posição original. Para que esteja no nosso dia a dia, eu estimo um intervalo de 10 a 50 anos. Não sei se 10 ou 50, mas duvido que chegue em 5 anos”, revela o pesquisador. “Mas o nanoscópio é uma realidade tecnológica no presente!”, conclui.

Além do grupo da UFMG, composto por pesquisadores e estudantes de diferentes áreas, também assinam o artigo colaboradores da Universidade Federal da Bahia, do Inmetro (Instituto Nacional de Metrologia, Qualidade e Tecnologia) e de instituições parceiras no Japão, nos Estados Unidos e na Bélgica.

]]>
0
Super e semicondutor são destaques do ano, com desafios para aplicação https://sinteses.blogfolha.uol.com.br/2020/12/29/super-e-semicondutor-sao-destaques-do-ano-com-desafios-para-aplicacao/ https://sinteses.blogfolha.uol.com.br/2020/12/29/super-e-semicondutor-sao-destaques-do-ano-com-desafios-para-aplicacao/#respond Tue, 29 Dec 2020 19:31:36 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/12/cpu-3061923_1280-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=155 A pandemia de Covid-19 transformou completamente as listas de principais conquistas científicas em 2020, como todo o resto.

Em 2020, foram finalmente desvendadas as estruturas tridimensionais das proteínas, foram enviadas três missões a Marte e outras para buscar material na Lua e no asteroide Ryugu, e tivemos avanços importantes em estratégias para enfrentar diferentes doenças, incluindo o HIV. Mas ficou difícil competir com vacinas desenvolvidas em um décimo do tempo normalmente empregado e com todo o conhecimento produzido sobre um vírus e uma doença absolutamente desconhecidos há apenas um ano.

Mesmo com toda esta disrupção, não há entre as tradicionais listas do tipo –como nas publicadas pelas revistas Nature e Science— uma que não registre a produção do primeiro material supercondutor em temperatura ambiente, ainda que fora do topo e sem a alcunha de “descoberta científica do ano”.

Assim como a emergência de uma pandemia a partir de uma zoonose, a obtenção do novo material não foi exatamente uma surpresa. Outras listas, do final de 2019, sobre o que esperar da ciência em 2020, registravam a expectativa. E, neste caso, a mudança de foco para a Covid-19 parece não ter afetado o trabalho na área.

Juntando hidrogênio, carbono e enxofre, os cientistas observaram a supercondutividade em temperaturas de até cerca de 14ºC. A supercondutividade foi compreendida como propriedade exclusiva das baixíssimas temperaturas desde 1911, quando descoberta, até 1986, ano de início da escalada até as primeiras temperaturas acima dos 0ºC reportadas em outubro deste ano.

Além de ser um avanço incremental e esperado, construído ao longo de décadas, há um outro motivo para a conquista parecer um pouco morna (sem intenção de trocadilho!): o material foi obtido a uma pressão mais de 2,5 milhões vezes maior que a do ambiente em que vivemos, produzida entre as garras de uma espécie de pinça de diamante. Ainda longe, portanto, das fantásticas aplicações previstas para supercondutores em temperatura ambiente, que vão de equipamentos médicos e trens ultrarrápidos de levitação magnética à extrema eficiência energética de modo geral, pela ausência de resistência à passagem da corrente nesses materiais e, assim, redução das perdas energéticas.

Fora das listas gerais, mas vencedor em concurso mais especializada promovido pela revista Physics World, um outro material obtido em 2020 compartilha com o supercondutor em temperatura ambiente não apenas os desafios até a aplicação, mas também o apelido de Santo Graal (neste caso, da indústria microeletrônica, ou melhor, optoeletrônica).

Trata-se de um nanofio de silício sintetizado com uma estrutura cristalina hexagonal (padrão de ordenamento espacial dos átomos no material), e não com estrutura do tipo diamante, como normalmente o material se apresenta.

O silício é a base de toda a indústria de microcomputadores, por suas propriedades eletrônicas (de semicondutor) associadas ao fato de ser abundante e barato. No entanto, está próximo um limite operacional importante. O crescimento do poder de processamento dos chips implica aumento no consumo de energia e, também, no calor gerado pela resistência do material, em um cenário que só poderá ser ultrapassado com a integração da fotônica –transmissão de informação pela luz, ou seja, fótons, no lugar de elétrons– à eletrônica.

E o rei da eletrônica tem um desempenho pífio quando se trata das suas propriedades ópticas. Alguns semicondutores emitem luz quando submetidos a uma corrente elétrica, como nos LEDs, mas este não é o caso do silício comum, devido a uma propriedade inerente ao material (chamada de gap indireto ou de estrutura de bandas indireta). Assim, até agora, o caminho para a incorporação da luz passa pela integração de outros materiais aos chips de silício, o que é possível, mas difícil e caro.

Com o novo material, este obstáculo pode ser superado, com aplicações potenciais também nas telecomunicações e em sensores químicos. No entanto, ainda é preciso produzir o silício hexagonal em uma superfície plana –no lugar do nanofio–, o que, segundo os pesquisadores, é só uma questão de tempo.

A virada de um ano para outro traz justamente a sensação de termos um novo tempo para superar desafios, resolver problemas e alcançar as metas estabelecidas na véspera de 1º de janeiro. Neste fim de 2020, para todo o mundo e, felizmente, para grande parte da comunidade científica, o controle da pandemia sem dúvida é a prioridade. Mas, para muitos cientistas e engenheiros de materiais, produzir supercondutores em temperatura e pressão próximas às do ambiente e lasers a base de silício deve vir logo abaixo na lista.

]]>
0
Processos que mantêm a vida podem apoiar matriz energética sustentável https://sinteses.blogfolha.uol.com.br/2020/11/23/processos-que-mantem-a-vida-podem-apoiar-matriz-energetica-sustentavel/ https://sinteses.blogfolha.uol.com.br/2020/11/23/processos-que-mantem-a-vida-podem-apoiar-matriz-energetica-sustentavel/#respond Mon, 23 Nov 2020 21:34:40 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/11/capa_autoorganizacao-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=131 A natureza é inspiração de desenvolvimentos tecnológicos em todas as áreas e, com muita frequência, de novos materiais. Em Sínteses, já vimos como a transpiração humana e de outros animais inspirou o uso de hidrogel para resfriamento de robôs flexíveis e conhecemos a busca por um material tão resistente quanto o ouriço da castanha do Pará.

Nestes exemplos, embora se busque reproduzir soluções presentes em organismos vivos, o caminho para tentar chegar aos mesmos resultados é completamente diferente dos processos naturais.

No nosso Universo, tudo tende ao equilíbrio ou, como registra a chamada Segunda Lei da Termodinâmica, ao nível máximo de entropia (frequentemente descrita como grau de desordem, ou desorganização, de um sistema) e, por consequência, mínimo de energia. No entanto, para um ser vivo, o equilíbrio significa a morte. Como ninguém quer atingir este equilíbrio, ou seja, o momento em que a energia chega ao seu nível mínimo, nós e os animais, por exemplo, nos alimentamos, recebendo assim matéria com alto teor energético.

Na síntese convencional de materiais ou outras substâncias, o processo quase sempre é feito de forma consecutiva, passo a passo, objetivando a chegada ao equilíbrio. Juntamos A e B para produzir C, em uma reação que segue até que as três espécies químicas (A, B e C) estejam em equilíbrio. Depois, pegamos C, já mais complexo, e misturamos com D, para chegar a E, novamente em equilíbrio. E assim por diante, até termos o hidrogel para resfriamento do robô ou um material de construção tão resistente quanto a castanha do Pará.

Porém, em condições fora do equilíbrio, a síntese pode acontecer com todas as reações simultaneamente. Por exemplo, a interação entre A e B pode resultar no dobro de B, em um fenômeno conhecido como autocatálise, que descreve um aumento da concentração de B pela sua própria formação. Se também estiver presente uma etapa de inibição –a reação de B com C, por exemplo–, o crescimento de B pode ser freado, com escalas de tempo diferentes e, assim, oscilação na concentração de B, com momentos de maior ou menor produção. Essas oscilações levam, dentre outras consequências, a padrões e estruturas na matéria –como espirais, poros, dendritos e organizações multicamadas– muito mais complexos que os obtidos na síntese convencional.

Na natureza, este tipo de estruturação auto-organizada é onipresente, indicando que oscilações em processos naturais são muito comuns. Como estrutura e propriedades de diferentes materiais estão intimamente relacionadas, os pesquisadores têm buscado compreender melhor esses mecanismos, com o objetivo de empregá-los na obtenção de novos materiais com composição e estrutura complexas e, assim, propriedades físicas e químicas que atendam às necessidades tecnológicas mais urgentes.

No Brasil, o Laboratório de Dinâmica Eletroquímica e Conversão de Energia da Universidade Estadual de Campinas (Unicamp) estuda há cerca de quatro anos a síntese eletroquímica auto-organizada com o objetivo de obter, no futuro, materiais para transformações na nossa matriz energética rumo a configurações mais sustentáveis. Materiais para aplicação, por exemplo, em dispositivos como células a combustível, baterias e sensores.

“A termodinâmica clássica foi muito estudada, as coisas funcionam, temos capacidade de previsão, mas só em condições de equilíbrio. E o equilíbrio é um pouco sem graça”, resume Raphael Nagao, professor do Instituto de Química da Unicamp. “É natural que façamos primeiro a parte mais simples. Mas um universo de possibilidades existentes entre o começo da reação e o equilíbrio fica de fora, e é nessas possibilidades que estamos interessados”, complementa, ao comentar as pesquisas que o grupo realiza com dispositivos eletroquímicos.

Dispositivos eletroquímicos muito conhecidos são as pilhas e baterias, nos quais o interesse maior está na corrente elétrica gerada pelo transporte de cargas (elétrons) entre os polos negativo e positivo (eletrodos) através de uma solução (eletrólito). Porém, além da corrente, as reações de redução (ganho de elétrons) e oxidação (perda) que acontecem nestes dispositivos levam à deposição ou à dissolução de materiais sobre os eletrodos. A deposição eletroquímica está, por exemplo, por trás dos processos que conhecemos como niquelação, galvanização e cromagem, comuns na indústria automobilística.

Comumente, a obtenção de materiais por deposição ou dissolução eletroquímica é feita em uma abordagem mais convencional, em que oscilações nas variáveis principais, como corrente e potencial, são indesejadas e, portanto, evitadas.

O objetivo dos pesquisadores que têm trabalhado com auto-organização é compreender melhor o que acontece fora do equilíbrio e verificar como controlar com precisão e racionalizar o crescimento de padrões e estruturas. Nagao cita o exemplo de materiais a base de cobre, essenciais à redução do CO2 (a reação química, não a diminuição da quantidade, embora uma coisa leve à outra). Essa reação de redução visa a transformação do gás causador de efeito estufa em combustíveis e produtos químicos de alto valor agregado.

“Nós conhecemos alguns sistemas eletroquímicos que permitem a manipulação da estruturação de cobre e óxido de cobre. Nossa ideia é fazer a síntese destes materiais de forma auto-organizada, controlando a estruturação, e, então, verificar se há um diferencial no que diz respeito à eficiência da conversão de CO2, na comparação com a deposição em condições nas quais não há oscilações”, explica.

O campo, no entanto, ainda é novo, e demanda muita pesquisa básica junto às indagações sobre possíveis efeitos tecnológicos. “Embora existam bases matemáticas para o estudo de sistemas fora do equilíbrio, ainda estamos muito longe de conseguir entender profundamente o que acontece. Mas não podemos deixar de investigar, por causa disso, se é possível usar, nas nossas sínteses, esses mecanismos que encontramos em seres vivos e que são tão bem sucedidos”, conclui Nagao.

]]>
0
Vírus complexo: partículas sintéticas ajudam a entender o Sars-CoV-2 https://sinteses.blogfolha.uol.com.br/2020/04/09/virus-complexo-particulas-sinteticas-ajudam-a-entender-o-sars-cov-2/ https://sinteses.blogfolha.uol.com.br/2020/04/09/virus-complexo-particulas-sinteticas-ajudam-a-entender-o-sars-cov-2/#respond Thu, 09 Apr 2020 18:04:47 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/04/quiralcf.jpg https://sinteses.blogfolha.uol.com.br/?p=104 Pouco mais de três meses após as primeiras notícias sobre o Sars-CoV-2, a imagem do vírus com sua “coroa de espinhos” — responsável pelo nome de coronavírus — é familiar. Essa geometria complexa é parte importante da interação do vírus com nossas membranas celulares no momento da infecção, e compreendê-la pode ajudar no combate à Covid-19 e a outras doenças.

As mesmas leis naturais regem o surgimento da complexidade em sistemas artificiais ou biológicos, e obter partículas sintéticas análogas àquelas encontradas em seres vivos é importante no estudo desses organismos. Isso porque os materiais artificiais são menos frágeis que suas contrapartidas biológicas. Mas, enquanto na natureza a complexidade é comum, nos laboratórios a história é um pouco mais complicada.

A complexidade estrutural de materiais biológicos está relacionada à ordenação hierárquica de “blocos de construção” em múltiplas escalas, da nanométrica à macroscópica — como já vimos, aqui em Sínteses, no estudo da castanha do Pará. No entanto, é muito difícil obter esse ordenamento em várias escalas para sistemas artificiais.

Um grupo de pesquisadores do Brasil, Estados Unidos e China acaba de dar um passo importante neste sentido, não só produzindo partículas sintéticas com complexidade superior às biológicas, mas também avançando na compreensão dos fatores envolvidos nessa produção e propondo formas de medir a complexidade.

Em estudo publicado hoje (9) na revista científica Science, os pesquisadores relatam como, a partir de nanoplaquetas formadas por sais de ouro e aminoácidos, conseguiram montar partículas hierarquicamente organizadas com espinhos torcidos e outras morfologias complexas. O truque foi balancear diferentes forças atuantes no processo de construção dessas partículas e, muito especialmente, aplicar a quiralidade do aminoácido empregado — a cisteína — no controle desse processo.

A quiralidade é uma característica de algumas moléculas — e de grande parte daquelas que compõem sistemas biológicos — relacionada à sua forma. A principal analogia utilizada para explicar o conceito é com as nossas mãos: direita e esquerda, praticamente iguais, mas impossíveis de serem sobrepostas com exatidão por serem uma a imagem no espelho da outra. Além de conferir propriedades distintas às versões “direita” e “esquerda” de uma mesma molécula em algumas situações, a quiralidade interfere na interação dessas moléculas com outras partículas e campos que também sejam quirais.

“Nós temos trabalhado com quiralidade de nanomateriais há pelo menos seis anos, e já sabíamos que mudar o aminoácido resultava em estruturas com a mesma complexidade, mas que eram imagens especulares umas das outras. O trabalho publicado agora focou na compreensão de como a informação quiral codificada na molécula de aminoácido menor que um nanômetro poderia ser amplificada e propagada para escalas de tamanho muito maiores”, explica André Farias de Moura, um dos autores da pesquisa, professor do Departamento de Química da Universidade Federal de São Carlos (UFSCar) e pesquisador do Centro de Desenvolvimento de Materiais Funcionais. “Estamos vendo que o fato de haver quiralidade leva nossos sistemas de estudo a terem propriedades antes presentes apenas nos organismos vivos”, complementa.

O pesquisador reitera que é difícil transferir a informação quiral — mão esquerda, mão direita, ou rotação no sentido horário ou anti-horário — ao longo de várias ordens de grandeza. “Neste caso, partimos de moléculas muito pequenas, cuja informação quiral está codificada em um único átomo de carbono, e essa informação foi transmitida para a próxima escala, gerando folhas torcidas inicialmente com tamanhos da ordem de cinco nanômetros, que cresceram até a ordem de micrômetros e se agregaram em estruturas ainda maiores e mais complexas”, relata.

Entender esse processo de codificação e transferência de informação entre escalas é um dos pontos centrais do estudo. Isto justamente porque o sistema produzido na pesquisa é mais simples e robusto que os equivalente naturais, permitindo maior controle das variáveis e, assim, a ajuda na compreensão de como os sistemas biológicos formam suas estruturas hierárquicas complexas, de onde tiram suas funcionalidades.

“Esses materiais não são específicos para aplicações biológicas, mas, além das aplicações usuais em optoeletrônica, catálise e outras, sempre existe uma aplicação biológica potencial. Como todo e qualquer sistema biológico é por definição quiral, nanomateriais quirais podem agir de maneira mais seletiva se ajustarmos o tipo e o grau de quiralidade para um alvo molecular biológico”, explica Moura. Ou seja, além do melhor entendimento de organismos vivos, outra consequência é o potencial de desenvolvimento de moléculas para tratamento de doenças e, também, produção de vacinas.

“Não podemos usar sabão ou hipoclorito de sódio para matar vírus, bactérias ou fungos quando já estão dentro do nosso corpo, pois não são seletivos e atacariam nossas células também. Mas, com base neste trabalho, podemos afirmar com firmeza que, uma vez compreendidas as interações entre nanopartículas e partículas complexas como os vírus, deveremos ser capazes de vislumbrar nanopartículas sob medida cujo alvo sejam essas entidades microscópicas ameaçadoras”, registra Moura.

“Infelizmente, não existe uma panaceia: este é um empreendimento científico mundial em longo prazo, e nossa contribuição deve abrir novos caminhos de investigação. Mesmo que não ofereçam alívio no presente, esta e outras pesquisas inovadoras vão contribuir para aprimorar nossa prontidão para enfrentar situações como esta no futuro”, conclui.

O artigo intitulado “Emergence of Complexity in Hierarchically Organized Chiral Particles” está disponível no site da Science. Outras informações também podem ser conferidas no texto que preparei para divulgação pela UFSCar.

Dentre os autores brasileiros, além de Moura e ex-alunos seus, também está Sérgio Ricardo Muniz, professor do Instituto de Física de São Carlos da Universidade de São Paulo (USP).

O financiamento da pesquisa no Brasil teve recursos da Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp), do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) e da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes).

]]>
0
Inteligência artificial promete futuro com materiais sob medida https://sinteses.blogfolha.uol.com.br/2020/02/26/inteligencia-artificial-promete-futuro-com-materiais-sob-medida/ https://sinteses.blogfolha.uol.com.br/2020/02/26/inteligencia-artificial-promete-futuro-com-materiais-sob-medida/#respond Wed, 26 Feb 2020 22:56:19 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/02/hal9000-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=79 O ser humano sempre procurou materiais que pudessem satisfazer seus desejos e necessidades, mas a forma como essa busca se dá mudou ao longo do tempo.

Nas idades pré-históricas identificadas com diferentes materiais (pedra, bronze, ferro), partia-se de propriedades evidentes desses materiais –a dureza, por exemplo– para o uso em aplicações como caça e guerra.

Depois, e até muito recentemente, passamos a criar novos materiais por um processo empírico de tentativa e erro, ainda que informado pelo conhecimento experimental e teórico acumulado e, depois, também por simulações computacionais. Esses novos materiais, sintetizados com participação significativa do acaso –tanta que o processo é apelidado por pesquisadores de “tente e tenha sorte”–, são então caracterizados para conhecimento profundo de suas propriedades e, a partir desse conhecimento, sugestão de novas aplicações.

Agora, o que a ciência de dados e a inteligência artificial prometem é o processo inverso, em que imaginamos uma aplicação e perguntamos à máquina qual material mais provavelmente terá as propriedades necessárias.

O Materials Genome Initiative, programa do governo Obama lançado em 2011 para dobrar a velocidade e, concomitantemente, reduzir o custo da descoberta de novos materiais, é considerado um marco no desenvolvimento da área. A iniciativa destaca a existência de um intervalo que vai de 10 a 20 anos para um novo material chegar ao mercado e atribui esse tempo à dependência da intuição científica associada ao processo de tentativa e erro. Para diminui-lo, propõe, sobretudo, o investimento em ferramentas da ciência de dados.

“Os métodos de inteligência artificial são estudados desde os anos 1980. A mudança que temos agora é uma quantidade muito grande de dados disponíveis”, situa Gustavo Martini Dalpian, professor da Universidade Federal do ABC (UFABC) que tem usado essas ferramentas na busca de novos materiais para aplicações em energia. “Hoje, há ações envolvendo big data para quase todas as vertentes de materiais para energia. Há pessoas procurando materiais para células solares de perovskitas, para baterias de lítio mais eficientes, novos materiais termoelétricos”, exemplifica.

Em 2019, Dalpian e o estudante de doutorado Douglas José Baquião Ribeiro publicaram artigo relatando a busca por materiais para as chamadas células solares de banda intermediária, que prometem eficiência superior às células fotovoltaicas convencionais. Com o apoio da técnica de screening, os pesquisadores partiram de um conjunto de quase 50 mil possibilidades para chegar em uma lista com apenas três materiais.

“Os bancos disponibilizam volumes imensos de informações sobre propriedades de materiais já sintetizados e hipotéticos. Se queremos, por exemplo, encontrar um material com dureza próxima à do diamante, a ideia é procurar nos bancos de dados aqueles que possuem um módulo de compressibilidade volumétrica grande, e estes potencialmente serão bons candidatos. O desafio passa a ser, portanto, definir quais propriedades precisam ser buscadas, as quais chamamos de descritores”, explica Dalpian.

O que o screening e outros métodos permitem, portanto, é o melhor aproveitamento de dados acumulados sobre materiais, resultantes de décadas de trabalho experimental e simulações computacionais. Esses dados tornam possível prever propriedades de novos materiais, com o uso de técnicas de inteligência artificial. Dentre essas técnicas, destaca-se a aprendizagem de máquina (machine learning), cujos algoritmos são capazes de identificar correlações complexas entre composição, estrutura e propriedades dos materiais, muito difíceis de serem detectadas pelos métodos tradicionais. Com isso, detectam padrões e aprendem tendências mesmo sem compreender os mecanismos físicos por trás de um determinado resultado.

Universo inexplorado

A revista Science, em nota sobre o tema publicada recentemente, registra que pode chegar à casa dos bilhões o número de materiais ainda desconhecidos. Destes, a grande maioria é irrelevante, o que transforma a procura por materiais de interesse, nas palavras do periódico, em uma busca por agulhas no palheiro.

Os vidros são uma classe de materiais que ilustra bem este desafio. Das 1052 composições vítreas estimadas como possíveis –a partir de combinações entre os elementos da tabela periódica–, apenas 105 vidros já foram sintetizados. Este universo inexplorado traz grandes oportunidades e, vislumbrando esse potencial, Edgar Dutra Zanotto, professor do Departamento de Engenharia de Materiais (DEMa) da Universidade Federal de São Carlos (UFSCar) e Diretor do Centro de Pesquisa, Tecnologia e Educação em Materiais Vítreos (Certev), iniciou há pouco mais de dois anos o trabalho com ferramentas de ciência de dados. Para tanto, buscou a parceria de André Carlos Ponce de Leon Ferreira de Carvalho, do Instituto de Ciências Matemáticas e de Computação (ICMC) da Universidade de São Paulo (USP).

Em um primeiro artigo, publicado em outubro de 2018, os pesquisadores treinaram um algoritmo para previsão de uma propriedade fundamental na produção de vidros, a temperatura de transição vítrea (Tg). O treinamento foi realizado a partir de dados com a Tg de 55.000 composições vítreas.

Agora, o grupo acaba de publicar um segundo artigo que compara a performance de seis algoritmos diferentes na previsão da mesma propriedade e, para os próximos meses, está previsto o primeiro trabalho que insere outras propriedades nos cálculos realizados. A meta é chegar em softwares de design inverso de vidros, ou seja, nos quais são inseridas as propriedades desejadas para obter um pequeno conjunto de composições a serem testadas empiricamente.

Neste caso, além da economia de tempo e dinheiro, há o potencial de obter materiais com propriedades e aplicações exóticas. Isto porque vidros com até 10 elementos químicos em sua composição são comuns, mas acima disso é muito mais difícil experimentar sem o apoio da inteligência artificial.

]]>
0
Forte como um ouriço https://sinteses.blogfolha.uol.com.br/2020/02/13/forte-como-um-ourico/ https://sinteses.blogfolha.uol.com.br/2020/02/13/forte-como-um-ourico/#respond Thu, 13 Feb 2020 11:00:42 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/02/ourico-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=66 Você já viu a casca da castanha do Pará?

Não o invólucro marrom de três faces que envolve cada castanha, em formato de esfiha (ou alguém me ajuda com uma analogia melhor?).

Muito menos os restos de película escura que sobram nas castanhas, alimento tão brasileiro e, ao mesmo tempo, pouco familiar na sua aparência original.

Alguém conhece o ouriço, fruto esférico da castanheira, que abriga uma ou duas dezenas de sementes (as castanhas), não se quebra na queda de árvores que podem chegar aos 50 metros de altura e, normalmente, é rompido pelos dentes de um único animal, a cotia?

Marília Sonego não o conhecia. Até que um tio trouxe um exemplar para casa, de Porto Velho, e, com o pai da pesquisadora, embarcou em uma saga para serrá-lo em duas partes com vistas à produção de um cinzeiro. “Eu estava no mestrado, buscando um tema para a minha pesquisa de doutorado, já com interesse em materiais biológicos. Fiquei intrigada com toda aquela dificuldade para abrir o ouriço”, conta a hoje quase doutora pelo Programa de Pós-Graduação em Ciência e Engenharia de Materiais da Universidade Federal de São Carlos (UFSCar), com defesa da tese marcada para o próximo mês de março.

Quatro anos depois, Marília Sonego tem grande chance de ser a maior conhecedora do mesocarpo do fruto da castanheira em todo o mundo. Seu doutorado buscou, primeiramente, caracterizar a camada responsável pela notável resistência mecânica do ouriço –o tal mesocarpo, situado entre uma camada mais externa que apodrece no amadurecimento e um endocarpo muito fino para sustentar qualquer coisa. Geralmente, este é um trabalho realizado por especialistas na área da botânica, mas, como não achou a descrição na literatura já existente, a engenheira de materiais arregaçou as próprias mangas.

Além disso, o trabalho buscou estratégias para utilizar as estruturas encontradas em novos materiais, em um processo conhecido como bioinspiração ou biomimetismo. “Na natureza, os materiais estão sujeitos às mesmas leis e enfrentam os mesmos problemas que nós no laboratório, na indústria, na arquitetura… Enfrentam, por exemplo, a gravidade, o atrito, a degradação pela luz do sol… A diferença é que a natureza teve bilhões de anos para ir encontrando as soluções, por tentativa e erro, e entender as estratégias que ela desenvolveu pode ajudar muito”, situa a pesquisadora.

No esforço de caracterização do ouriço, Sonego utilizou equipamentos de microscopia e tomografia e, também, experimentos para verificar a composição química e ensaios mecânicos para mensurar a performance do mesocarpo sob compressão e tração e outras propriedades relacionadas à tenacidade do material. Em compressão, o ouriço da castanha do Pará se mostrou mais difícil de quebrar que as cascas de todas as outras castanhas estudadas, dentre as quais a macadâmia, segunda colocada; amêndoas, avelãs e nozes.

Já os exames de imagem e análises químicas revelaram detalhes da estrutura do ouriço em diferentes níveis: do macroscópico ao molecular, passando pelo celular (microscópico) e pelo chamado nível fibrilar (nanoscópico). Foi no nível celular que Sonego encontrou a inspiração central para o material proposto ao final da pesquisa. “Todas as escalas têm as suas estratégias, que se conectam, e é essa organização hierárquica que explica como componentes relativamente fracos podem resultar em um sistema com propriedades excepcionais. Mas esta é uma complexidade difícil de reproduzir artificialmente, e eu precisei fazer escolhas”, revela a pesquisadora.

Os principais resultados encontrados podem ser resumidos em duas características. Uma é a combinação entre dois tipos de células presentes, as fibras, alongadas, e as esclereides, esféricas, ambas ocas e com grossas paredes celulares. A outra é o posicionamento das fibras em três camadas com orientações distintas, como um sanduíche com duas camadas na vertical e uma camada central na horizontal.

A combinação de fibras e esclereides pode ser comparada a uma treliça (formada pelas fibras) com espaços preenchidos por espuma (as esclereides ocas). Esta é uma estratégia que permite a presença de material mais resistente onde é necessário suportar maior carga, com o restante preenchido por elementos menos densos, o que reduz o peso final da estrutura.

Além disso, essa organização sugere um mecanismo dificultador da propagação de trincas análogo ao que vemos em paredes de tijolo aparente. Nelas, o posicionamento dos tijolos em fileiras deslocadas faz com que a trinca tenda a desviar dos tijolos, que exigem maior energia para serem quebrados. Assim, a trinca percorre um caminho mais longo, o que retarda a fratura. No ouriço, a trinca evitaria quebrar a parede celular de fibras e esclereides, se propagando pelas interfaces entre elas.

Já o posicionamento das fibras em diferentes orientações resulta em um efeito oposto ao que observamos em uma casca de banana. Na banana, as fibras estão posicionadas em um só sentido, de uma ponta a outra (longitudinal), o que dificulta o rompimento ao redor da fruta (latitudinal), mas permite que a descasquemos com facilidade, puxando a casca no sentido das fibras. No ouriço, como há fibras em todas as direções, há resistência em todas elas.

Considerando essas características, a pesquisadora propôs um material organizado em várias camadas de fibras de um polímero (PLA) reforçado por fibra de carbono. Essas camadas foram produzidas por impressão 3D, para chegar às diferentes orientações das fibras, verticais e horizontais. Os espaços entre as fibras foram preenchidos por uma espuma com esferas de vidro ocas imitando as esclereides, e todo o conjunto foi ligado com o uso de uma resina (epóxi).

O material resultante também foi submetido a testes para verificar seu desempenho mecânico, o que mostrou alguns bons resultados e evidenciou aprimoramentos necessários, como mudanças na quantidade e tamanho das bolinhas e a redução da diversidade de materiais aplicados.

“A etapa de caracterização foi longa. No primeiro ano inteiro, por exemplo, eu fiquei estudando biologia! Só cheguei à etapa de proposição do compósito no último ano, e minhas expectativas eram baixas devido à alta complexidade do ouriço. Mas obtivemos alguns bons resultados, e agora sei quais são os próximos passos a seguir. Eu só usei materiais comerciais, por exemplo, e uma possibilidade é desenvolver esses materiais aqui na universidade”, registra a pesquisadora.

A pesquisa de Sonego foi realizada em parceria com Luiz Antonio Pessan, seu orientador no doutorado, professor no Departamento de Engenharia de Materiais da UFSCar, e com Claudia Fleck, pesquisadora da Technische Universität Berlin, na Alemanha, onde a brasileira realizou alguns dos experimentos. O estudo recebeu financiamento da Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp).

As diferentes etapas envolveram também outras colaborações, no Brasil e na Alemanha. Parte dos resultados já foram publicados em julho do ano passado na revista especializada Bioinspiration & Biomimetics, e um segundo artigo está aceito e deve sair em breve na Scientific Reports, do grupo Nature. O trabalho também foi apresentado em congressos na Alemanha, Austrália e no Canadá, além do Brasil.

]]>
0
De piscina de íons a bebedouro de bactérias, o potencial do hidrogel https://sinteses.blogfolha.uol.com.br/2020/01/23/de-piscina-de-ions-a-bebedouro-de-bacterias-o-potencial-do-hidrogel/ https://sinteses.blogfolha.uol.com.br/2020/01/23/de-piscina-de-ions-a-bebedouro-de-bacterias-o-potencial-do-hidrogel/#respond Thu, 23 Jan 2020 21:52:07 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/01/sensor-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=43 Hidrogel é um termo relativamente conhecido quando designa o produto usado em intervenções para aumento de coxas e nádegas. Infelizmente, a fama vem principalmente das complicações, que já resultaram inclusive na morte de pacientes. Também é um hidrogel o responsável pelo poder absorvente das fraldas descartáveis, e são feitas de hidrogel as bolinhas usadas para manter vasos sempre com água. Outro hidrogel familiar é a gelatina.

Além desses usos mais comuns, esta classe de materiais tem um campo de aplicações na fronteira do conhecimento que vai de pele artificial a tijolo, como ilustram pesquisas divulgadas recentemente.

Hidrogéis são redes tridimensionais de polímeros –naturais ou sintéticos– capazes de reter grande quantidade de água em sua estrutura. Outra característica importante é a elasticidade desses compostos.

Uma das novas aplicações, desenvolvida no Canadá, é um sensor que, grudado à pele, transforma estímulos mecânicos, como tensão e deformação, e outros sinais, como umidade, em sinais elétricos. O dispositivo foi batizado de AISkin (de pele iônica artificial em inglês), e os primeiros resultados foram publicados na revista Materials Horizons.

A previsão é que o sensor possa incrementar tecnologias vestíveis em áreas diversas. No artigo, os cientistas relatam testes bem-sucedidos com a detecção do movimento de um dedo da mão, o que poderia ajudar, na área da saúde, o acompanhamento de processos de reabilitação, por exemplo. Outro teste foi feito com um touch pad (painel sensível ao toque) grudado à mão de uma pessoa, no qual foi possível controlar ações em um jogo eletrônico no computador.

A inspiração para o novo sensor veio diretamente da pele humana, uma rede polimérica com presença de uma variedade de sensores neurais. Esses sensores transformam os estímulos recebidos –como um aperto de mão ou a aproximação do fogo– em sinais elétricos pelo transporte de íons (átomos eletricamente carregados, positiva ou negativamente, por terem perdido ou ganhado elétrons). Essa capacidade é chamada de transdução –a transformação de estímulo ou sinal de um tipo em outro.

As peles artificiais mais comuns são eletrônicas, fazendo essa transmissão de informações com base em elétrons, e não íons. Isto, segundo os criadores da AISkin, resulta em uma lacuna entre a pele humana e a alternativa artificial, e é para diminuir essa distância que o novo dispositivo foi pensado. Nele, o meio aquoso do hidrogel é que garante a movimentação dos íons entre duas camadas, uma com carga negativa e outra positiva, e consequentemente viabiliza a transdução dos estímulos recebidos em sinais elétricos.

Neste primeiro caso, portanto, o hidrogel é a estrutura que sustenta um sistema complexo junto à nossa pele. Em uma segunda aplicação, também divulgada nos últimos dias, ele hidrata e alimenta bactérias responsáveis pela produção de tijolos de concreto!

A pesquisa foi realizada na University of Colorado Boulder, Estados Unidos, e publicada na revista Matter. Os cientistas colocaram em um molde areia e bactérias que, após um processo chamado de biomineralização, resultaram em um cimento vivo.

Molde preenchido com areia, bactérias e hidrogel
Molde preenchido com areia, bactérias e hidrogel (Crédito: College of Engineering and Applied Science at University of Colorado Boulder)

O material é mais sustentável que o concreto convencional, cuja produção emite gases de efeito estufa (CO2). Além disso, ele tem potencial de aplicação em materiais inteligentes, que detectem, por exemplo, níveis de toxinas no ambiente.

Na biomineralização, carbonato de cálcio (CaCO3) é precipitado pelas bactérias, conferindo ao material maior resistência à fratura. É um processo análogo ao que acontece na produção das conchas dos moluscos, dentre outros seres vivos que produzem minerais. Para a fabricação de concreto, também está na mistura o hidrogel, que fornece a água e os nutrientes necessários à manutenção da vida das bactérias.

Dentre possíveis desenvolvimentos para o novo material, os pesquisadores propõem o uso em ambientes com recursos limitados e, até mesmo, em outro planeta: Marte, para onde poderia ser necessário transportar apenas as bactérias. E hidrogel.

]]>
0
Sara e a síntese https://sinteses.blogfolha.uol.com.br/2020/01/17/sara-e-a-sintese/ https://sinteses.blogfolha.uol.com.br/2020/01/17/sara-e-a-sintese/#respond Fri, 17 Jan 2020 11:00:27 +0000 https://sinteses.blogfolha.uol.com.br/files/2020/01/ovo-300x215.jpg https://sinteses.blogfolha.uol.com.br/?p=36 Há uns dias, servi a amigas ovos perfeitos. A expressão não é pretensão da cozinheira: refere-se a ovos preparados com um termocirculador, equipamento que mantém a temperatura da água constante e uniforme. Resultam gemas com consistência de quindim, impossíveis de obter na panela comum.

Uma das convidadas, química, me convidou depois da degustação a ajudá-la nos processos de síntese com os quais está envolvida no laboratório. Imagino que tenha sido um elogio (obrigada, Sara!): o reconhecimento da capacidade de escolha dos ingredientes –ovos caipiras, flor de sal e pimenta do reino moída na hora– e de controle de variáveis no seu preparo.

Isto porque também a síntese exige conhecimento e habilidade na escolha de elementos ou substâncias químicas, os precursores. A partir de algum processo de transformação –físico ou, na maior parte das vezes, químico–, esses precursores resultam em novos compostos, os produtos, com composição, estrutura e propriedades distintas das originais. Aqui, há um limite na analogia com o ovo, já que não escolhi os elementos presentes na clara ou na gema, apenas aproveitei o que a natureza fez.

A natureza, aliás, pode ser considerada o maior laboratório de síntese. “Na minha sala, vemos móveis de madeira, material feito pela natureza. Durante muito tempo, nossas roupas eram todas de tecidos naturais, linho, algodão, seda. Tudo isso é resultado de sínteses”, registra, para começo de uma conversa sobre o assunto, Elson Longo da Silva, professor emérito do Departamento de Química da Universidade Federal de São Carlos (UFSCar).

“Em geral, a natureza ganha de 10 a 0 de nós. Até hoje não conseguimos, por exemplo, imitar as rolhas de cortiça, com todas as suas características. Podemos pensar também nas propriedades mecânicas incríveis das carapaças das tartarugas, nas estruturas dos corais, no mecanismo de camuflagem dos camaleões…”, acrescenta.

Voltando a laboratórios mais modestos, os processos de síntese podem aprimorar propriedades daquilo que já existe, ou resultar em materiais antes inexistentes. Outras vezes, o que se busca é produzir em larga escala compostos que, naturalmente, só existem em pequenas quantidades.

“Eu costumo chamar de novo material não só aquele que não existia, mas também o velho conhecido que foi descoberto para uma nova função. Em qualquer das duas situações, a síntese tem um papel central. É só a partir do material existente, que foi preparado por alguma rota sintética, que suas propriedades poderão ser testadas, e sua aplicação viabilizada. A síntese, portanto, é a gênese de tudo”, define Aldo Zarbin, professor titular do Departamento de Química da Universidade Federal do Paraná (UFPR).

A síntese de novos materiais diz respeito, portanto, ao estabelecimento de uma relação entre função, propriedade, composição e estrutura. Zarbin pontua que toda matéria é um material em potencial. No material, uma ou mais propriedades têm funções.

Assim, para uma determinada aplicação –material para próteses ósseas, por exemplo–, é preciso estabelecer as propriedades desejadas, como leveza, resistência mecânica, biocompatibilidade. Depois, são identificados quais precursores, combinados em um determinado processo de síntese (rota), podem resultar na composição e, também, na microestrutura desejada, que diz respeito às ligações estabelecidas entre os átomos e ao seu arranjo espacial.

Estabelecer a melhor rota de síntese significa definir etapas a serem seguidas: aquecimento na água seguido de resfriamento rápido em banho de gelo, no caso do meu ovo. Exige, também, controlar as variáveis envolvidas: temperatura –65ºC– e tempo –60 minutos– no meu processo, certamente muitíssimo mais simples que aqueles enfrentados pela Sara no laboratório!

“O que nós gostaríamos de fazer? Pegar a matéria e transformar exatamente no produto em que temos interesse, como um alfaiate, sob medida. Mas, geralmente, este é um processo que acontece por tentativa e erro”, conta Longo.

A manifestação do pesquisador destaca como, apesar da relevância do conhecimento teórico e, mais recentemente, do apoio de ferramentas computacionais, a pesquisa experimental é o momento de revelação do sucesso ou fracasso da rota de síntese escolhida.

Produzir um novo material, no entanto, não obrigatoriamente se dá através de rotas sintéticas. “Sintetizar significa sair de moléculas simples e ir juntando as peças, como um Lego. A síntese é criar a partir de precursores diferentes. Isolar algo que já está em algum lugar é preparação, não síntese, por exemplo”, explica Zarbin.

Além disso, há uma outra etapa fundamental, o processamento. “De nada adianta ter um material com propriedades fantásticas que não pode ser processado ou incorporado em determinados produtos ou sistemas, para que essas propriedades sejam de fato úteis”, completa o pesquisador da UFPR.

Para o ovo, sugiro servir sobre um bom pão torrado –a versão oferecida a Sara– ou como ponto alto de uma tigela com molho de tomates e espinafre refogado.

 

 

]]>
0