De que são feitas as luzes do Natal

Quem teve a sorte de céus limpos nos últimos dias assistiu a um fenômeno astronômico raro e com especial simbolismo: a conjunção entre Júpiter e Saturno. Os planetas estiveram tão próximos no céu, vistos aqui da Terra, que chegaram a parecer um único astro. Uma conjunção como esta, para alguns especialistas, está na origem da lenda da estrela de Belém, guia dos Reis Magos até Jesus Cristo recém-nascido.

Mas, mesmo que não seja esta a estrela de Natal –e ainda que nunca tenha existido uma estrela concreta–, é fato que a lenda, junto à concepção de Jesus como luz que teria vindo iluminar a humanidade, está na origem da tradição natalina de iluminarmos árvores, casas e ruas.

As luzes de Natal antecedem em muito a descoberta da eletricidade. Foi em 1882 que Edward Hibberd Johnson substituiu as velas usadas até então por lâmpadas incandescentes, buscando assim publicidade para o mais recente invento de seu amigo e sócio Thomas Edison. As lâmpadas de Edison resolveram o risco de incêndios e, desde os anos 2000, fios com centenas de LEDs vêm substituindo a iluminação incandescente, com economia de energia e maior durabilidade.

LED é sigla do Inglês para diodo emissor de luz. São materiais semicondutores que emitem luz quando submetidos a uma corrente elétrica, uma propriedade chamada de eletroluminescência. Por isso, o marco de início da história dos LEDs é colocado em 1907, quando a eletroluminescência foi demonstrada pelo inglês Henry Joseph Round. Mas foi só em 1962 que o americano Nick Holonyak Jr., trabalhando nos laboratórios da General Eletric, produziu o primeiro LED emissor de luz visível com um brilho passível de alguma aplicação. Estes primeiros LEDs emitiam luz vermelha, assinatura do semicondutor formado basicamente pela combinação entre gálio e arsênio.

A emissão de luz nos LEDs –no infravermelho e no ultravioleta, além do espectro visível– acontece pela interação entre elétrons e buracos, uma parte da Física que, ao menos na minha época, passava longe das aulas de ciências. Mas, para termos alguma ideia do que se trata, podemos recorrer a uma analogia mais familiar, do átomo como sistema planetário.

Neste modelo, os elétrons orbitam um núcleo formado por prótons e nêutrons, em níveis de energia definidos, os orbitais, e entre eles temos níveis proibidos, onde o elétron não pode estar. Há um número restrito de elétrons que podem ocupar um determinado nível de energia, e eles sempre ocupam primeiro os menores níveis possíveis, mais próximos do núcleo.

Quando passamos de átomos isolados para sólidos compostos por vários átomos organizados –indo da Física de Partículas para a chamada Física do Estado Sólido, ou da Matéria Condensada–, os níveis de energia desses átomos interagem, formando bandas de energia. Novamente, os elétrons podem circular por diferentes bandas, mas existem bandas proibidas. Outra classificação importante é entre banda de valência –a banda mais alta inteiramente preenchida com os elétrons correspondentes, inerte– e banda de condução– que é a banda logo acima, onde há elétrons livres.

A diferença fundamental entre materiais condutores e isolantes é a energia necessária para os elétrons fazerem a transposição desta barreira entre as bandas de valência e de condução, ou seja, atravessarem a banda proibida (chamada de gap, novamente do Inglês).

Os materiais semicondutores, por sua vez, ficam no meio do caminho, se comportando como condutores ou isolantes dependendo das condições. Neles, os elétrons, ao passarem de uma banda a outra, deixam na banda de valência a sua ausência, e é ela que é chamada de buraco. Buracos comportam-se como uma partícula carregada positivamente e, como o elétron, também se movimentam, contribuindo com a corrente.

Os LEDs são um tipo específico de material semicondutor, chamado de diodo. Nos diodos, semicondutores misturados com outros elementos (a palavra usada para esta mistura é dopagem) são combinados, o que resulta em um lado cheio de elétrons livres e outro com os buracos correspondentes. Quando uma corrente elétrica é aplicada, é a interação entre elétrons e buracos que resulta na emissão de luz, e cor e brilho dessa luz dependem da energia necessária para que os elétrons superem a banda proibida.

Essa energia, por sua vez, depende do material empregado. Assim, depois do primeiro LED, vermelho e pouco brilhante, nos anos seguintes novos materiais e combinações entre eles foram sendo testados na busca por mais cores e brilho.

Apesar da alegria proporcionada pelas luzes de Natal, não foi esta a aplicação que rendeu o Prêmio Nobel de Física de 2014 aos inventores do primeiro LED azul. As aplicações dos LEDs vão muito além e, hoje, eles substituem as lâmpadas incandescentes em residências e, até mesmo, na iluminação pública de cidades inteiras.

Para que pudéssemos chegar até este momento, era necessária a luz branca, obtida pela combinação de LEDs emissores de luz vermelha, verde e azul. Os LEDs vermelhos e verdes existiam desde a década de 1960, mas foi só em 1990 que os japoneses Isamu Akasaki, Hiroshi Amano e Shiji Nakamuro sintetizaram um diodo a base de nitreto de gálio emissor de luz azul.

Dali para a frente, os piscas de Natal tornaram-se mais coloridos e as cidades mais iluminadas com menor gasto de energia, mas também há um agravamento na poluição luminosa. Por isso, neste momento, desejo aos leitores e às leitoras de Sínteses não um Natal com muita luz, mas sim o equilíbrio entre a alegria da iluminação natalina e a escuridão necessária para que vejamos as estrelas sobre nós.